【Prompt Engineering:自我反思(Reflexion)】

简介: 自我反思(Reflexion)是一种通过语言反馈强化基于语言的智能体的新范式,无需微调模型即可提升其在决策、推理和编程等任务中的表现。该框架包括参与者(生成动作)、评估者(评分)和自我反思(生成反馈)三个部分,利用大语言模型生成具体反馈,帮助智能体从错误中快速学习,显著提高了多种任务的性能。

 自我反思(Reflexion)

自我反思是一个通过语言反馈来强化基于语言的智能体的框架。根据 Shinn et al. (2023)(opens in a new tab),“自我反思是一种‘口头’强化的新范例,它将策略参数化为智能体的记忆编码与 LLM 的参数选择配对。”

在高层次上,自我反思将来自环境的反馈(自由形式的语言或者标量)转换为语言反馈,也被称作 self-reflection,为下一轮中 LLM 智能体提供上下文。这有助于智能体快速有效地从之前的错误中学习,进而提升许多高级任务的性能。 image.gif 编辑

如上图所示,自我反思由三个不同的模型组成:

  • 参与者(Actor):根据状态观测量生成文本和动作。参与者在环境中采取行动并接受观察结果,从而形成轨迹。链式思考(CoT)(opens in a new tab)ReAct(opens in a new tab) 被用作参与者模型。此外,还添加了记忆组件为智能体提供额外的上下文信息。
  • 评估者(Evaluator):对参与者的输出进行评价。具体来说,它将生成的轨迹(也被称作短期记忆)作为输入并输出奖励分数。根据人物的不同,使用不同的奖励函数(决策任务使用LLM和基于规则的启发式奖励)。
  • 自我反思(Self-Reflection):生成语言强化线索来帮助参与者实现自我完善。这个角色由大语言模型承担,能够为未来的试验提供宝贵的反馈。自我反思模型利用奖励信号、当前轨迹和其持久记忆生成具体且相关的反馈,并存储在记忆组件中。智能体利用这些经验(存储在长期记忆中)来快速改进决策。

总的来说,自我反思的关键步骤是a)定义任务,b)生成轨迹,c)评估,d)执行自我反思,e)生成下一条轨迹。下图展示了自我反思的智能体学习迭代优化其行为来解决决策、编程和推理等各种人物的例子。自我反思(Refelxion)通过引入自我评估、自我反思和记忆组件来拓展 ReAct 框架。 image.gif 编辑

结果

实验结果表明,自我反思能够显著提高 AlfWorld 上的决策任务、HotPotQA 中的问题推理以及在 HumanEval 上的 Python 编程任务性能。

在序列决策 (AlfWorld) 任务上进行评估时,ReAct + Reflexion 用启发式和 GPT 的自我评估进行二元分类,完成了 130/134 项任务,显着优于 ReAct。 image.gif 编辑

在仅仅几个学习步骤中,自我反思显著优于所有基线方法。仅对于推理以及添加由最近轨迹组成的情景记忆时,Reflexion + CoT 的性能分别优于仅 CoT 和具有情景记忆的 CoT。 image.gif 编辑

如下表所示,在 MBPP、HumanEval 和 Leetcode Hard 上编写 Python 和 Rust 代码时,Reflexion 通常优于之前的 SOTA 方法。 image.gif 编辑

何时自我反思?

自我反思最适合以下情况:

  1. 智能体需要从尝试和错误中学习:自我反思旨在通过反思过去的错误并将这些知识纳入未来的决策来帮助智能体提高表现。这非常适合智能体需要通过反复试验来学习的任务,例如决策、推理和编程。
  2. 传统的强化学习方法失效:传统的强化学习(RL)方法通常需要大量的训练数据和昂贵的模型微调。自我反思提供了一种轻量级替代方案,不需要微调底层语言模型,从而使其在数据和计算资源方面更加高效。
  3. 需要细致入微的反馈:自我反思利用语言反馈,这比传统强化学习中使用的标量奖励更加细致和具体。这让智能体能够更好地了解自己的错误,并在后续的试验中做出更有针对性的改进。
  4. 可解释性和直接记忆很重要:与传统的强化学习方法相比,自我反思提供了一种更可解释、更直接的情景记忆形式。智能体的自我反思存储在其记忆组件中,让分析和理解其学习过程变得更加简单。

自我反思在以下任务中是有效的:

  • 序列决策:自我反思提高了智能体在 AlfWorld 任务中的表现,涉及在各种环境中导航并完成多步目标。
  • 推理:自我反思提高了 HotPotQA 上智能体的性能,HotPotQA 是一个需要对多个文档进行推理的问答数据集。
  • 编程:自我反思的智能体在 HumanEval 和 MBPP 等基准测试上编写出了更好的代码,在某些情况下实现 SOTA 结果。

以下是自我反思的一些限制:

  • 依赖自我评估能力:反思依赖于智能体准确评估其表现并产生有用反思的能力。这可能是具有挑战性的,尤其是对于复杂的任务,但随着模型功能的不断改进,预计自我反思会随着时间的推移而变得更好。
  • 长期记忆限制:自我反思使用最大容量的滑动窗口,但对于更复杂的任务,使用向量嵌入或 SQL 数据库等高级结构可能会更有利。
  • 代码生成限制:测试驱动开发在指定准确的输入输出映射方面存在限制(例如,受硬件影响的非确定性生成器函数和函数输出)。

图像来源:Reflexion: Language Agents with Verbal Reinforcement Learning

相关文章
|
4月前
|
机器学习/深度学习 人工智能 程序员
Reflexion:让AI智能体学会反思的神奇技术
想象一下AI智能体能像人类一样从错误中学习,Reflexion技术让智能体不再需要重新训练就能自我改进。本文通过一个智能体助手小R的成长故事,带你轻松理解这个改变智能体学习方式的创新技术。
352 2
|
自然语言处理 Python
【Prompt Engineering提示:Active-Prompt、方向性刺激提示、PAL(程序辅助语言模型)】
Diao等人(2023)提出了一种名为Active-Prompt的新方法,通过自适应提示来优化大型语言模型(LLMs)在特定任务中的表现。此方法通过不确定性评估选择需标注的问题,利用少量人工标注的思维链(CoT)示例逐步优化模型,提高其解决问题的能力。相比固定范例,Active-Prompt能够更有效地针对不同任务调整提示,从而提升模型性能。
653 7
【Prompt Engineering提示:Active-Prompt、方向性刺激提示、PAL(程序辅助语言模型)】
|
6月前
|
人工智能 运维 安全
智能体安全与可信AI:防护机制与伦理考量
作为一名长期专注于人工智能安全领域的技术博主"摘星",我深刻认识到随着智能体(AI Agent)技术的快速发展和广泛应用,其安全性和可信度已成为当前AI领域最为关键的挑战之一。在过去几年的研究和实践中,我见证了从简单的规则基础智能体到复杂的大语言模型驱动智能体的演进历程,同时也观察到了伴随而来的各种安全威胁和伦理问题。智能体系统不仅面临着传统网络安全中的攻击威胁,还要应对AI特有的对抗攻击、数据投毒、模型窃取等新型安全挑战。更为复杂的是,智能体的自主决策能力使其在执行任务时可能产生意想不到的行为,这不仅涉及技术层面的安全防护,更触及了AI伦理、责任归属、隐私保护等深层次问题。本文将从智能体安全
552 0
|
8月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
2287 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
10月前
|
人工智能 监控 前端开发
主流多智能体框架设计原理
本文描述了关于智能体(Agents)和多智能体系统(Multi-Agent Systems, MAS)的详尽介绍,涵盖了从定义、分类到具体实现框架的多个方面。
主流多智能体框架设计原理
|
机器学习/深度学习 人工智能 自然语言处理
【Prompt Engineering提示工程技术:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
思维树(ToT)框架,旨在解决复杂任务,通过构建一棵思维树,利用语言模型生成并评估中间步骤,结合搜索算法(如广度优先搜索)进行系统探索。ToT在不同任务中需定义思维步骤及候选数量,如“算24游戏”需三分步骤,每步评估可行性。实验表明,ToT显著优于其他提示方法。此外,ToT框架可结合强化学习不断进化,提升解决复杂问题的能力。
808 1
【Prompt Engineering提示工程技术:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
|
存储 人工智能 搜索推荐
RAG系统的7个检索指标:信息检索任务准确性评估指南
大型语言模型(LLMs)在生成式AI领域备受关注,但其知识局限性和幻觉问题仍具挑战。检索增强生成(RAG)通过引入外部知识和上下文,有效解决了这些问题,并成为2024年最具影响力的AI技术之一。RAG评估需超越简单的实现方式,建立有效的性能度量标准。本文重点讨论了七个核心检索指标,包括准确率、精确率、召回率、F1分数、平均倒数排名(MRR)、平均精确率均值(MAP)和归一化折损累积增益(nDCG),为评估和优化RAG系统提供了重要依据。这些指标不仅在RAG中发挥作用,还广泛应用于搜索引擎、电子商务、推荐系统等领域。
6990 2
RAG系统的7个检索指标:信息检索任务准确性评估指南
|
前端开发
使用LangGraph构建多Agent系统架构!
【10月更文挑战第7天】
2297 0
|
人工智能 数据处理 Python
🔍数据侦探的AI助手:Prompt技巧大公开,洞察商业先机不手软
【8月更文挑战第1天】在数据驱动时代,AI助手作为数据侦探的强大伙伴,通过精心设计的AI Prompt技巧帮助解析复杂市场。案例中,一电商平台欲进入新兴市场,面临数据挑战。初始Prompt聚焦消费者偏好及影响因素分析。为进一步深化洞察,Prompt加入节假日购物模式、商品类别偏好及社交媒体影响等细节。结合领域知识,优化Prompt关注价格敏感度与定制化营销策略。最终,AI助手生成的报告揭示了消费者行为模式,并提出市场策略建议,助力电商成功布局新兴市场。此过程展示了AI Prompt在商业洞察中的关键作用,预示着其在未来洞察之旅中的广阔前景。
510 2