Rackspace不请自来 进入用户的数据中心

简介:

Rackspace将旗下的云带到阁下的面前:Rackspace日前宣布推出新的产品,将会把OpenStack打包,使其可以在它自己的数据中心、或第三方数字谷仓或用户的内部系统里运行。

内部部署云的风头一时无两:微软的Azurestack推出预览版,并赢得来自诸如惠普的巨头的支持;思科推出新的HyperFlex,并承诺会含云体验;VMware 走VxRail融合设备路线,原因是VMware觉得VxRail比软件定义的EVO:RAIL更佳。当然,还有Nutanix和SimpliVity,他们旗下的云产品拥有超级融合设备,他们都为自己旗下的云产品的可用性和可扩展性而自豪。

Rackspace新推出的产品更是往前走了一步,如果用户愿意的话,Rackspace就会很高兴地为用户在任何地方安装和管理一个OpenStack包,按他们的话说是“从地板到服务栈任何地方都可以”。

Rackspace现在是个服务型公司了:它之所以销售此款内部部署产品也是要将用户的计算预算转往“经营费用”栏目。

Rackspace的新服务号称提供和Rackspace自己的云供相同的体验,如果用户选择在内部系统上使用,就不会有延迟并可以节省电信费用。

Rackspace还指出,如果用户同时使用一篮子支持服务,就可以无需费心运行和维护OpenStack。从这一点来看,该项目可以加分,Rackspace的Mitaka版在这一点上曾做过努力。假如Rackspace真的可以实现所谓的“给我所想要的虚拟机”体验并能够做到规模上可以扩展和实现简单的存储机制,那它可能真的挖到宝贝了,尤其是相对于那些愿意花钱外包扩展IT功能的部门来说是这样。



本文转自d1net(转载)

相关文章
|
6月前
|
存储 传感器 监控
探索现代数据中心的冷却技术革新
【4月更文挑战第23天】 在信息技术迅猛发展的今天,数据中心作为计算和存储的核心枢纽,其稳定性和效率至关重要。然而,随着处理能力的增强,设备发热量急剧上升,有效的冷却方案成为确保数据中心持续运行的关键因素。本文将深入分析当前数据中心面临的热管理挑战,并探讨几种前沿的冷却技术,包括液冷系统、热管技术和环境自适应控制策略。通过比较不同技术的优缺点,我们旨在为数据中心管理者提供实用的冷却解决方案参考。
|
2天前
|
存储 运维 区块链
区块链技术对数据中心的潜在影响
区块链技术对数据中心的潜在影响
|
3月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
6月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
|
6月前
|
人工智能 监控 物联网
探索现代数据中心的冷却技术
【5月更文挑战第27天】 在信息技术迅猛发展的今天,数据中心作为信息处理的核心设施,其稳定性和效率至关重要。而随着计算能力的提升,数据中心面临的一个重大挑战便是散热问题。本文将深入探讨现代数据中心冷却技术的进展,包括传统的空气冷却系统、水冷系统,以及新兴的相变材料和热管技术。通过对不同冷却方式的效率、成本及实施难度的分析,旨在为读者提供一份关于数据中心散热优化的参考指南。
|
6月前
|
机器学习/深度学习 资源调度 监控
利用机器学习技术优化数据中心能效
【5月更文挑战第30天】在数据中心管理和运营中,能源效率的优化是降低运营成本和减少环境影响的关键。本文旨在探讨如何应用机器学习技术来提升数据中心的能源效率。通过对现有数据中心运行数据的深入分析,开发预测性维护模型,以及实施智能资源调度策略,我们可以显著提高数据中心的能效。本研究提出了一种集成机器学习算法的框架,该框架能够实时监控并调整数据中心的能源消耗,确保以最佳性能运行。
|
6月前
|
存储 大数据 数据中心
提升数据中心能效的先进冷却技术
【5月更文挑战第27天】 在信息技术不断进步的今天,数据中心作为计算和存储的核心枢纽,其能源效率已成为评价其可持续性的关键指标。本文将探讨当前数据中心面临的热管理挑战,并展示一系列创新的冷却技术解决方案,旨在提高数据中心的能效,同时确保系统的稳定性和可靠性。通过对比传统冷却方法和新兴技术,我们将分析各种方案的优势、局限性以及实施难度,为数据中心运营者提供科学的决策参考。
|
6月前
|
存储 传感器 人工智能
探索现代数据中心的冷却技术革新
【5月更文挑战第18天】 在数字化时代,数据中心作为信息处理与存储的核心设施,其稳定性和效能至关重要。随着计算需求的激增,数据中心的冷却系统面临着前所未有的挑战。传统的空调冷却方法不仅耗能巨大,而且效率低下。本文将深入探讨现代数据中心冷却技术的最新进展,包括液冷技术、热管应用、环境辅助设计以及智能化管理等方面,旨在提供一种高效、可持续且经济的解决方案,以应对日益增长的冷却需求。
下一篇
无影云桌面