AI计算机视觉笔记十九:Swin Transformer训练

简介: 本文介绍了使用自定义数据集训练和测试目标检测模型的步骤。首先,通过安装并使用标注工具labelme准备数据集;接着修改配置文件以适应自定义类别,并调整预训练模型;然后解决训练过程中遇到的依赖冲突问题并完成模型训练;最后利用测试命令验证模型效果。文中提供了具体命令及文件修改指导。

续上一篇,训练自己的数据集,并测试。

一、安装标注软件labelme

安装labelme

pip install labelme
# 启动
labelme

image.png
这里数据集准本,标注图片数据过程自己探索。

最后文件结构如下:
image.png

二、修改配置文件

1、 修改configs_base_\models\mask_rcnn_swin_fpn.py第54、73行num_classes为自己的类别数

我的类型是4个,所以填写为4
image.png

2、运行 python modify.py 修改预训练模型

python .\modify.py --weights mask_rcnn_swin_tiny_patch4_window7_1x.pth --num_class 4 --output model_new.pt
3、修改configs_base_\default_runtime.py,在最后增加一句加载预训练模型命令,用绝对路径

image.png
4、修改configs_base_\datasets\coco_instance.py第31-32行数据加载情况

image.png
5、修改mmdet\datasets\coco.py第23行改为自己的标注,label顺序在coco_validate.ipynb中查看

CLASSES = ('arrow', 'car', 'dashed', 'line')

三、训练

python tools/train.py configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py
报错:AssertionError: Incompatible version of pycocotools is installed. Run pip uninstall pycocotools first. Then run pip install mmpycocotools to install open-mmlab forked pycocotools.

根据操作执行:

pip uninstall pycocotools

pip install mmpycocotools
在次执行训练命令,可以看出已经在训练了,
image.png

训练结束后,模型在目录​​​work_dirs/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco下。

四、测试

根据上一篇测试命令,测试

python demo/video_demo.py 1.mp4 configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py work_dirs/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco/latest.pth --out out.mp4

image.png

测试结果
image.png

相关文章
|
28天前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
12天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
51 13
|
14天前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
34 12
|
27天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
63 10
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
66 1
【AI系统】训练后量化与部署
|
2月前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
64 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
2月前
|
人工智能 自然语言处理 搜索推荐
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
Open Notebook 是一款开源的 AI 笔记工具,支持多格式笔记管理,并能自动将笔记转换为博客或播客,适用于学术研究、教育、企业知识管理等多个场景。
156 0
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
|
2月前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
76 8
|
9月前
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
695 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
5月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。