C语言 网络编程(九)并发的UDP服务端 以线程完成功能

本文涉及的产品
公网NAT网关,每月750个小时 15CU
简介: 这是一个基于UDP协议的客户端和服务端程序,其中服务端采用多线程并发处理客户端请求。客户端通过UDP向服务端发送登录请求,并根据登录结果与服务端的新子线程进行后续交互。服务端在主线程中接收客户端请求并创建新线程处理登录验证及后续通信,子线程创建新的套接字并与客户端进行数据交换。该程序展示了如何利用线程和UDP实现简单的并发服务器架构。

网络(九)并发的UDP服务端 以线程完成功能

客户端

// todo UDP发送端
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>


#define LOGIN_SUCCESS 1
#define LOGIN_FAIL 0
//?发送数据
//?@param fd 套接字描述符
//?@param addr 目标地址
//?@param addrlen 地址长度
void send_data(int fd, struct sockaddr_in * addr , socklen_t addrlen);

void login(int fd, struct sockaddr_in * addr ,struct sockaddr_in * new_addr , socklen_t new_addrlen);

//命令行参数 ip port
int main(int argc, char *argv[] ){
   
//    if(argc!= 3){
   
//        printf("Usage: %s ip port\n", argv[0]);
//        exit(EXIT_FAILURE);
//    }

    //!通过socket函数创建套接字
    //!@param domain 协议族,AF_INET表示IPv4协议族
    //!@param type 套接字类型,SOCK_DGRAM表示UDP套接字
    //!@param protocol 协议,一般为0 让系统⾃动识别
    //!@return 成功返回套接字描述符,失败返回-1
    int fd = socket(AF_INET, SOCK_DGRAM, 0);
    if(fd == -1){
       //创建套接字失败
        perror("socket err");
        exit(EXIT_FAILURE);
    }

    //准备接收消息的地址
    /*      struct sockaddr_in {
                short int sin_family; // 地址族 AF_INET
                unsigned short int sin_port; // 端口号
                struct in_addr sin_addr;// IP地址
                unsigned char sin_zero[8]; // 填充字节 为了对齐sockaddr
            };
    */
    struct sockaddr_in addr;
    memset(&addr, 0, sizeof(addr));
    addr.sin_family=AF_INET;
    addr.sin_port=htons(8083);//htons函数将主机字节序转换为网络字节序

    //addr.sin_addr.s_addr=inet_addr("192.168.74.1");//inet_addr()将点分十进制IP地址转换为网络字节序IP地址

    //inet_aton()将点分十进制IP地址转换为网络字节序IP地址
    //@param ip 字符串形式的IP地址
    //@param in_addr 结构体变量,用于存储IP地址
    int ret=inet_aton("172.17.140.183", &addr.sin_addr); // 成功返回⾮0,失败返回0
    if(ret == 0){
   
        perror("inet_aton err");
        exit(EXIT_FAILURE);
    }
    printf("ip == %d\n",addr.sin_addr.s_addr);



    //inet_ntoa()将网络字节序IP地址转换为点分十进制IP地址
    //char *ip=inet_ntoa(addr.sin_addr); // 成功返回⾮0,失败返回0
    //printf("ip == %s\n",ip);

    //获取  和服务端的新建的子进程通信
    struct sockaddr_in new_addr;
    login(fd, &addr, &new_addr, sizeof(new_addr));

    //与新的子进程通信
    send_data(fd, &new_addr, sizeof(new_addr));

    return 0;
}

//!发送数据
//!@param fd 套接字描述符
//!@param addr 目标地址
//!@param addrlen 地址长度
void send_data(int fd, struct sockaddr_in * addr , socklen_t addrlen){
   

    while (1){
   
        int n = 0;//返回发送的字节数
        char buf[1024] = {
   0};
        printf("请输入要发送的消息:");
        fgets(buf, 1024, stdin);


        //!发送数据
        //!@param fd 套接字描述符
        //!@param buf 发送缓冲区
        //!@param len 发送缓冲区长度
        //!@param flags 发送标志  0 表示默认操作
        //!@param addr 目标地址
        //!@param addrlen 地址长度
        //!@return 成功返回发送的字节数,失败返回-1
        n= sendto(fd, buf, strlen(buf), 0, (struct sockaddr *)addr, addrlen);
        if(n == -1){
   
            perror("sendto err");
            exit(EXIT_FAILURE);
        }

        if(strncmp(buf, "exit",4) == 0){
   
            break;
        }
    }

}


void login(int fd, struct sockaddr_in * addr ,struct sockaddr_in * new_addr , socklen_t addrlen){
   
    char login_status=LITTLE_ENDIAN;

    while (1){
   
        int n = 0;//返回发送的字节数
        char buf[1024] = {
   0};
        printf("请输入要发送的消息:");
        fgets(buf, 1024, stdin);



        n= sendto(fd, buf, strlen(buf), 0, (struct sockaddr *)addr, addrlen);
        if(n == -1){
   
            perror("sendto err");
            exit(EXIT_FAILURE);
        }

        //接收消息服务器的响应
        n= recvfrom(fd, &login_status, sizeof(login_status), 0, (struct sockaddr *)new_addr, &addrlen);
        if(n == -1){
   
            perror("recvfrom err");
            exit(EXIT_FAILURE);
        }
        if(login_status == LOGIN_SUCCESS){
   
            printf("登录成功\n");
            printf("新的子进程的地址为:%s:%d\n",inet_ntoa(new_addr->sin_addr),ntohs(new_addr->sin_port));
            break;
        }else if(login_status == LOGIN_FAIL){
   
            printf("登录失败\n");
            continue;
        }


        if(strncmp(buf, "exit",4) == 0){
   
            break;
        }
    }


}

服务端

服务端创建主线程,接收客户端的请求,创建新的子线程,
子线程完成后续交互,子线程中创建新的套接字,返回给客户端,后续交互将在新的套接字中完成.
将子线程分离,线程运行结束将由系统回收资源

// todo UDP服务器端程序
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#include <pthread.h>
#define LOGIN_SUCCESS 1
#define LOGIN_FAIL 0




//接收数据
void recv_data(int sockfd);
void *pthread_todo(void *arg);

//初始化套接字
int  init_socket(char *ip, char* port);

int TheLogin(char *ip, char * port);

//定义结构体为子线程传递参数
struct thread_arg {
   
    char *ip;
    unsigned char login_status;
    struct sockaddr_in thread_addr;//客户端的地址
}thread_arg;

int main(int argc, char *argv[]){
   


    //验证
    int new_sockfd = TheLogin("172.17.140.183", "8083");
    //接收数据
    //由子线程完成

    //关闭套接字
    close(new_sockfd);
    return 0;
}

//接收数据
void recv_data(int sockfd) {
   
    struct sockaddr_in client_addr;//客户端的地址
    int client_addr_len = sizeof(client_addr);

    while(1) {
   
        char recv_buf[1024]={
   0};

        //接收数据
        //*@param sockfd 套接字描述符
        //*@param buf 接收缓冲区
        //*@param len 接收缓冲区长度
        //*@param flags 接收标志
        //*@param src_addr 发送方地址
        //*@param addrlen 发送方地址长度
        //*@return 成功返回接收到的字节数,失败返回-1
        int ret = recvfrom(sockfd, recv_buf, sizeof(recv_buf), 0, (struct sockaddr *) &client_addr, &client_addr_len);
        if (ret == -1) {
            perror("recvfrom err");
            exit(EXIT_FAILURE);
        }
        //打印接收到的信息
        char *ip_str = inet_ntoa(client_addr.sin_addr);//将网络字节序IP地址转换为点分十进制IP地址
        int port = ntohs(client_addr.sin_port); //将网络字节序端口号转换为主机字节序端口号
        printf("接收到来自%s:%d的数据:%s\n", ip_str, port, recv_buf);

        if(strncmp(recv_buf, "exit", 4) == 0){
            //退出程序
            break;
        }
    }
    close(sockfd);
    return;
}


int  init_socket(char *ip,char *port){
    //!通过socket函数创建套接字
    //!@param domain 协议族,AF_INET表示IPv4协议族
    //!@param type 套接字类型,SOCK_DGRAM表示UDP套接字
    //!@param protocol 协议,一般为0 让系统⾃动识别
    //!@return 成功返回套接字描述符,失败返回-1
    int fd = socket(AF_INET, SOCK_DGRAM, 0);
    if(fd == -1){    //创建套接字失败
        perror("socket err");
        exit(EXIT_FAILURE);
    }

    //准备服务器地址
    /*      struct sockaddr_in {
                short int sin_family; // 地址族 AF_INET
                unsigned short int sin_port; // 端口号
                struct in_addr sin_addr;// IP地址
                unsigned char sin_zero[8]; // 填充字节 为了对齐sockaddr
            };
    */
    struct sockaddr_in addr;
    memset(&addr, 0, sizeof(addr));

    addr.sin_family=AF_INET;
    addr.sin_port=htons(atoi(port));//htons函数将主机字节序转换为网络字节序

    //inet_aton()将点分十进制IP地址转换为网络字节序IP地址
    //*@param ip 字符串形式的IP地址
    //*@param in_addr 结构体变量,用于存储IP地址
    int ret=inet_aton(ip, &addr.sin_addr); // 成功返回⾮0,失败返回0
    if(ret == 0){
        perror("inet_aton err");
        exit(EXIT_FAILURE);
    }


    //!绑定套接字到服务器地址
    //!@param sockfd 套接字描述符
    //!@param addr 服务器地址
    //!@param addrlen 服务器地址长度
    //!@return 成功返回0,失败返回-1
    int ret2 = bind(fd, (struct sockaddr*)&addr, sizeof(addr));
    if(ret2 == -1){
        perror("bind err");
        exit(EXIT_FAILURE);
    }


    return fd;
}


int TheLogin(char *ip, char *port){
    unsigned char login_status;
    int new_sockfd;
    //初始化套接字
    int sockfd = init_socket(ip, port);
    //线程创建
    pthread_t recv_thread;


    struct sockaddr_in client_addr;//客户端的地址
    int client_addr_len = sizeof(client_addr);

    while(1) {
        char recv_buf[1024]={0};

        int ret = recvfrom(sockfd, recv_buf, sizeof(recv_buf), 0, (struct sockaddr *) &client_addr, &client_addr_len);
        if (ret == -1) {
            perror("recvfrom err");
            exit(EXIT_FAILURE);
        }
        //打印接收到的信息
        char *ip_str = inet_ntoa(client_addr.sin_addr);//将网络字节序IP地址转换为点分十进制IP地址
        int port = ntohs(client_addr.sin_port); //将网络字节序端口号转换为主机字节序端口号
        printf("接收到来自%s:%d的数据:%s\n", ip_str, port, recv_buf);

        //登录验证
        //判断是否为登录请求
        login_status = ( strncmp(recv_buf, "login",5)==0 ? LOGIN_SUCCESS: LOGIN_FAIL ) ;
        if(login_status == LOGIN_SUCCESS){
             //使用子线程完成后续交互
             struct thread_arg pack;
             pack.ip = ip;
             pack.login_status = login_status;
             pack.thread_addr = client_addr;
             //创建子线程
             pthread_create(&recv_thread, NULL, pthread_todo, &pack);
             printf("子线程创建成功\n");
        } else{
            //回传失败消息
            sendto(sockfd, &login_status, sizeof(login_status), 0, (struct sockaddr *) &client_addr, client_addr_len);
        }
        //将新建的线程设置为分离状态
        pthread_detach(recv_thread);
        printf("子线程分离成功\n");

    }

}

void *pthread_todo(void *arg){
    //子线程函数
     struct thread_arg *pack = (struct thread_arg*)arg;



    //创建新的套接字文件描述符
    int new_sockfd = init_socket(pack->ip, "0");
    printf("子线程创建新的套接字文件描述符:%d\n", new_sockfd);
    sendto(new_sockfd, &pack->login_status, sizeof(pack->login_status), 0,\
    (struct sockaddr *) &pack->thread_addr, sizeof(pack->thread_addr));

    //接收数据
    recv_data(new_sockfd);

    pthread_exit(NULL);

}
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
12天前
|
网络协议 C语言
C语言 网络编程(十三)并发的TCP服务端-以进程完成功能
这段代码实现了一个基于TCP协议的多进程并发服务端和客户端程序。服务端通过创建子进程来处理多个客户端连接,解决了粘包问题,并支持不定长数据传输。客户端则循环发送数据并接收服务端回传的信息,同样处理了粘包问题。程序通过自定义的数据长度前缀确保了数据的完整性和准确性。
|
12天前
|
网络协议 C语言
C语言 网络编程(十一)TCP通信创建流程---服务端
在服务器流程中,新增了绑定IP地址与端口号、建立监听队列及接受连接并创建新文件描述符等步骤。`bind`函数用于绑定IP地址与端口,`listen`函数建立监听队列并设置监听状态,`accept`函数则接受连接请求并创建新的文件描述符用于数据传输。套接字状态包括关闭(CLOSED)、同步发送(SYN-SENT)、同步接收(SYN-RECEIVE)和已建立连接(ESTABLISHED)。示例代码展示了TCP服务端程序如何初始化socket、绑定地址、监听连接请求以及接收和发送数据。
|
12天前
|
网络协议 C语言
C语言 网络编程(十四)并发的TCP服务端-以线程完成功能
这段代码实现了一个基于TCP协议的多线程服务器和客户端程序,服务器端通过为每个客户端创建独立的线程来处理并发请求,解决了粘包问题并支持不定长数据传输。服务器监听在IP地址`172.17.140.183`的`8080`端口上,接收客户端发来的数据,并将接收到的消息添加“-回传”后返回给客户端。客户端则可以循环输入并发送数据,同时接收服务器回传的信息。当输入“exit”时,客户端会结束与服务器的通信并关闭连接。
|
9天前
|
网络协议
网络协议概览:HTTP、UDP、TCP与IP
理解这些基本的网络协议对于任何网络专业人员都是至关重要的,它们不仅是网络通信的基础,也是构建更复杂网络服务和应用的基石。网络技术的不断发展可能会带来新的协议和标准,但这些基本协议的核心概念和原理将继续是理解和创新网络技术的关键。
24 0
|
23天前
|
消息中间件 网络协议 算法
UDP 和 TCP 哪个更好?
【8月更文挑战第23天】
68 0
|
2月前
|
网络协议
Qt中的网络编程(Tcp和Udp)运用详解以及简单示范案例
Tcp和Udp是我们学习网络编程中经常接触到的两个通讯协议,在Qt也被Qt封装成了自己的库供我们调用,对于需要进行网络交互的项目中无疑是很重要的,希望这篇文章可以帮助到大家。 是关于Qt中TCP和UDP的基本使用和特点:
262 7
|
28天前
|
网络协议 网络安全 Python
电脑中 TCP/UDP 端口是否开放的测试:令人意想不到的神奇策略等你发现!
【8月更文挑战第19天】在网络管理和维护中,常需确认TCP/UDP端口是否开放以确保服务运行顺畅。端口如同计算机对外通信的“门”,TCP提供可靠连接,UDP则快速但无连接。测试端口是否开放的方法多样:可用`telnet`测试TCP端口,如`telnet localhost 80`;UDP测试较复杂,可用`nc`工具,如`nc -u -z localhost 53`。此外,也有在线工具可供选择,但需确保其安全性。
40 1
|
29天前
|
缓存 网络协议 算法
TCP、UDP是如何流量、拥塞控制的?今天一口气讲透!
TCP、UDP是如何流量、拥塞控制的?今天一口气讲透!
|
29天前
|
网络协议 Windows
在电脑上测试TCP/UDP端口是否开放,还是得网络大佬这招厉害!
在电脑上测试TCP/UDP端口是否开放,还是得网络大佬这招厉害!
|
10天前
|
网络协议 Linux
TCP 和 UDP 的 Socket 调用
【9月更文挑战第6天】