深度学习之推荐系统中的图嵌入

简介: 基于深度学习的推荐系统中的图嵌入技术,结合了图神经网络(GNN)和推荐系统的优势,通过捕捉用户和项目之间的复杂关系,提升推荐性能。

基于深度学习的推荐系统中的图嵌入技术,结合了图神经网络(GNN)和推荐系统的优势,通过捕捉用户和项目之间的复杂关系,提升推荐性能。以下是这一领域的详细介绍:

1. 推荐系统概述

推荐系统旨在根据用户的历史行为、兴趣偏好等信息,向用户推荐可能感兴趣的项目(如商品、电影、音乐等)。传统的推荐系统主要有基于内容的推荐、协同过滤推荐和混合推荐等方法。

2. 图嵌入技术

图嵌入技术是将图结构数据(如社交网络、知识图谱等)转换为低维向量表示,以便于在机器学习模型中进行处理。图嵌入方法主要有以下几类:

节点嵌入:学习图中每个节点的低维表示,如DeepWalk、Node2Vec等。

边嵌入:学习图中每条边的低维表示。

子图嵌入:学习子图或子结构的低维表示。

图整体嵌入:学习整个图的低维表示。

3. 图神经网络(GNN)

图神经网络是处理图结构数据的深度学习模型,能够捕捉节点和边之间的复杂关系。常见的GNN模型包括:

图卷积网络(GCN):通过卷积操作聚合邻居节点的信息。

图注意力网络(GAT):利用注意力机制对邻居节点进行加权聚合。

图自编码器(Graph Autoencoders, GAEs):通过自编码器结构学习节点和边的表示。

消息传递神经网络(MPNN):通过消息传递机制更新节点的特征。

4. 基于图嵌入的推荐系统

在推荐系统中,用户和项目可以被建模为图中的节点,用户与项目之间的交互(如评分、点击、购买等)可以被建模为图中的边。基于图嵌入的推荐系统主要通过以下几步实现:

4.1 图构建

构建用户-项目图,节点代表用户和项目,边代表用户与项目之间的交互。还可以加入用户之间的社交关系、项目之间的相似关系等信息,构建更加复杂的图结构。

4.2 图嵌入学习

通过图嵌入方法或GNN模型学习用户和项目的低维表示。常见的方法包括:

DeepWalk:通过随机游走生成节点序列,并使用Skip-gram模型学习节点嵌入。

Node2Vec:改进DeepWalk,引入参数控制随机游走的策略。

GCN:通过卷积操作聚合邻居节点的信息,学习节点嵌入。

GAT:利用注意力机制对邻居节点进行加权聚合,学习节点嵌入。

4.3 推荐模型训练

将学习到的用户和项目嵌入作为输入,训练推荐模型。常见的推荐模型包括:

矩阵分解模型:如协同过滤中的矩阵分解,通过分解用户-项目交互矩阵,预测用户对项目的评分。

深度神经网络模型:如Wide & Deep、DeepFM等,结合用户和项目嵌入,进行推荐预测。

序列模型:如RNN、LSTM等,处理用户的行为序列,进行个性化推荐。

4.4 推荐结果生成

根据训练好的推荐模型,生成推荐结果,向用户推荐可能感兴趣的项目。

5. 应用和评估

5.1 应用领域

基于图嵌入的推荐系统在多个领域具有广泛应用:

电子商务:向用户推荐商品,提升购买率和用户满意度。

内容推荐:向用户推荐新闻、视频、音乐等内容,增加用户粘性。

社交网络:向用户推荐好友、群组和活动,增强社交关系。

在线教育:向用户推荐课程、学习资源和学习路径,提高学习效果。

5.2 评估指标

评估推荐系统性能的常用指标包括:

准确率(Accuracy):衡量推荐结果的准确性。

召回率(Recall):衡量推荐结果的覆盖范围。

F1值(F1 Score):准确率和召回率的调和平均值,综合评估模型的性能。

平均准确率均值(Mean Average Precision, MAP):评估推荐结果的排序质量。

归一化折损累计增益(Normalized Discounted Cumulative Gain, NDCG):评估推荐结果的相关性和排序质量。

相关文章
|
机器学习/深度学习 人工智能 搜索推荐
协同过滤算法:个性化推荐的艺术与科学
协同过滤算法:个性化推荐的艺术与科学
协同过滤算法:个性化推荐的艺术与科学
|
11月前
|
存储 人工智能 算法
大语言模型的优化及基于Intel® Extension for Transformers 的部署实践
本次分享的主题是大语言模型的优化及基于Intel® Extension for Transformers 的部署实践,由曹慧燕分享。主要分为四个部分: 1. Intel® Extension for Transformers Overview 2. Optimizations 3. Neural Chat 4. Demo
295 1
|
存储 机器学习/深度学习 SQL
【Prompt Engineering:自我反思(Reflexion)】
自我反思(Reflexion)是一种通过语言反馈强化基于语言的智能体的新范式,无需微调模型即可提升其在决策、推理和编程等任务中的表现。该框架包括参与者(生成动作)、评估者(评分)和自我反思(生成反馈)三个部分,利用大语言模型生成具体反馈,帮助智能体从错误中快速学习,显著提高了多种任务的性能。
1429 2
【Prompt Engineering:自我反思(Reflexion)】
|
关系型数据库 MySQL
【随手记】MySQL中ROW_NUMBER()、RANK()和DENSE_RANK()函数的用法
【随手记】MySQL中ROW_NUMBER()、RANK()和DENSE_RANK()函数的用法
729 1
|
机器学习/深度学习 搜索推荐 算法
推荐系统的矩阵分解和FM模型
推荐系统的矩阵分解和FM模型
217 0
|
数据可视化 数据库
scRNA分析|使用CellChat完成细胞通讯分析-简单且可视化出众,代码自取
scRNA分析|使用CellChat完成细胞通讯分析-简单且可视化出众,代码自取
2577 0
|
机器学习/深度学习 数据采集 算法
基于机器学习的推荐算法构建技术详解
【6月更文挑战第4天】本文详述了构建基于机器学习的推荐算法,特别是协同过滤方法。从用户和物品相似性的角度,解释了用户-用户和物品-物品协同过滤的工作原理。涵盖了数据准备、预处理、特征工程、模型训练、评估优化及结果展示的构建流程。推荐算法在电商、视频和音乐平台广泛应用,未来将受益于大数据和AI技术的进步,提供更智能的推荐服务。
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow的保存与加载模型
【4月更文挑战第17天】本文介绍了TensorFlow中模型的保存与加载。保存模型能节省训练时间,便于部署和复用。在TensorFlow中,可使用`save_model_to_hdf5`保存模型结构,`save_weights`保存权重,或转换为SavedModel格式。加载时,通过`load_model`恢复结构,`load_weights`加载权重。注意模型结构一致性、环境依赖及自定义层的兼容性问题。正确保存和加载能有效利用模型资源,提升效率和准确性。
|
机器学习/深度学习 存储 搜索推荐
可能是推荐系统最详细且简单的入门教程
本文将深入介绍推荐系统的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐系统。
2783 0
可能是推荐系统最详细且简单的入门教程
|
Java Maven
Maven打包所有依赖
Maven打包所有依赖
314 0