NumPy 教程 之 NumPy 统计函数 5

简介: NumPy提供了多种统计函数,如`numpy.median()`用于计算数组元素的中位数。该函数可通过设置参数`axis`指定计算轴向,`out`指定结果存放位置,`overwrite_input`允许使用输入数组内存以提升性能,`keepdims`保持结果数组维度。示例展示了在不同轴向上调用`median()`的结果。

NumPy 教程 之 NumPy 统计函数 5

NumPy 统计函数

NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。

numpy.median()

numpy.median() 函数用于计算数组 a 中元素的中位数(中值)

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=)

参数说明:

a: 输入的数组,可以是一个 NumPy 数组或类似数组的对象。
axis: 可选参数,用于指定在哪个轴上计算中位数。如果不提供此参数,则计算整个数组的中位数。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
out: 可选参数,用于指定结果的存储位置。
overwrite_input: 可选参数,如果为True,则允许在计算中使用输入数组的内存。这可能会在某些情况下提高性能,但可能会修改输入数组的内容。
keepdims: 可选参数,如果为True,将保持结果数组的维度数目与输入数组相同。如果为False(默认值),则会去除计算后维度为1的轴。

实例

import numpy as np

a = np.array([[30,65,70],[80,95,10],[50,90,60]])
print ('我们的数组是:')
print (a)
print ('\n')
print ('调用 median() 函数:')
print (np.median(a))
print ('\n')
print ('沿轴 0 调用 median() 函数:')
print (np.median(a, axis = 0))
print ('\n')
print ('沿轴 1 调用 median() 函数:')
print (np.median(a, axis = 1))

输出结果为:

我们的数组是:
[[30 65 70]
[80 95 10]
[50 90 60]]

调用 median() 函数:
65.0

沿轴 0 调用 median() 函数:
[50. 90. 60.]

沿轴 1 调用 median() 函数:
[65. 80. 60.]

目录
相关文章
|
24天前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
23 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
2月前
|
数据可视化 Python
NumPy 教程 之 NumPy Matplotlib 7
使用Python的绘图库Matplotlib与NumPy结合进行数据可视化,提供Matplotlib作为MatLab开源替代方案的有效方法,以及如何利用plt()函数将数据转换成直观的直方图示例。
38 11
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 6
Matplotlib 是一个强大的 Python 绘图库,能与 NumPy 协同工作,提供类似 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。通过 `numpy.histogram()` 函数示例,展示了如何创建数据频率分布图,该函数接受输入数组和 bin 参数,生成对应频率的直方图。示例代码及输出清晰展示了 bin 的边界与对应频率的关系。
32 11
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 4
使用 Python 的绘图库 Matplotlib,结合 NumPy,生成各种图形,作为 MatLab 的开源替代方案。您将学习到如何用 matplotlib 和 NumPy 包来创建正弦波图形,以及如何在同一图中利用 subplot() 函数组织和展示不同的子图,例如同时绘制正弦和余弦曲线。通过实际代码示例,加深对这些功能的理解。
38 12
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 3
使用Python的绘图库Matplotlib与NumPy结合,创建有效的MatLab开源替代方案。它还支持与PyQt和wxPython等图形工具包搭配使用。通过向`plot()`函数添加特定格式字符串,可以展示离散值而非线性图。提供了多种线型和标记选项,例如实线`-`、虚线`--`、点标记`.`等,以及颜色缩写如蓝色`b`、绿色`g`等。示例代码展示了如何用圆点表示数据点而非线条。
37 10
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 5
Matplotlib 是 Python 的绘图库,配合 NumPy 可作为 MatLab 的开源替代方案,并能与 PyQt 和 wxPython 等图形工具包共同使用。本教程重点讲解 `bar()` 函数用于生成条形图的方法,并通过实例展示了如何创建并显示两组数据的条形图。
31 7
|
2月前
|
存储 Python
NumPy 教程 之 NumPy IO 1
NumPy IO 教程介绍了如何使用 NumPy 读写文本及二进制数据。教程覆盖了 `.npy` 和 `.npz` 格式的文件操作,其中 `save()` 和 `load()` 函数用于单个数组的存取,而 `savez()` 则可以保存多个数组。文本文件处理则由 `loadtxt()` 和 `savetxt()` 完成。通过示例展示了 `numpy.save()` 函数的具体用法,并解释了其参数含义,如文件名、数组对象以及序列化选项等。
39 10
|
2月前
|
Serverless Python
NumPy 教程 之 NumPy 线性代数 7
NumPy 的 `linalg` 库提供了丰富的线性代数功能,如点积、矩阵乘法、求解线性方程等。`numpy.linalg.inv()` 用于计算矩阵的乘法逆矩阵,即找到满足 `AB=BA=E` 的矩阵 `B`,其中 `E` 是单位矩阵。示例展示了如何对矩阵 `A` 计算其逆矩阵 `A^(-1)` 并求解线性方程 `A^(-1)B`,得到向量 `[5, 3, -2]` 作为解。
48 10
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 2
Matplotlib 是 Python 的绘图库,能与 NumPy 结合使用,提供 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。由于 Matplotlib 默认不支持中文,可以使用思源黑体等字体或系统自带的中文字体(如仿宋)解决这一问题,通过指定字体路径或设置 `plt.rcParams['font.family']` 来实现中文显示。
22 1
|
2月前
|
存储 Ubuntu 数据可视化
NumPy 教程 之 NumPy Matplotlib 1
Matplotlib作为Python的绘图库,能够与NumPy结合使用,提供了类似MatLab的开源替代方案,并支持与PyQt和wxPython等图形工具包一同使用。本教程将指导你如何在不同系统环境下安装matplotlib,并通过实例演示如何利用它进行数据可视化,包括创建坐标轴标签、绘制线性图表并展示结果。
19 1