centos7之NameSpace

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: centos7之NameSpace

1.NameSpace介绍

很多编程语言都包含了命名空间的概念,我们可以认为命名空间是一种封装,封装本身实际上实现了代码的隔离


在操作系统中命名空间命名空间提供的是系统资源的隔离,其中系统资源包括了:进程、网络、文件系统…


实际上linux系统实现命名空间主要目的之一就是为了实现轻量级虚拟化服务,也就是我们说的容器,在同一个命名空间下的进程可以感知彼此的变化,
而对其他命名空间的进程一无所知,这样就可以让容器中的进程产生一个错觉,仿佛它自己置身于一个独立的系统环境当中,以此达到独立和隔离的目的。

2.Linux系统中NameSpace分类

命名空间 描述 作用 备注
进程命名空间 隔离进程ID Linux通过命名空间管理进程号,同一个进程,在不同的命名空间进程号不同 进程命名空间是一个父子结构,子空间对于父空间可见
网络命名空间 隔离网络设备、协议栈、端口等 通过网络命名空间,实现网络隔离 docker采用虚拟网络设备,将不同命名空间的网络设备连接到一起
IPC命名空间 隔离进程间通信 进程间交互方法 PID命名空间和IPC命名空间可以组合起来用,同一个IPC名字空间内的进程可以彼此看见,允许进行交互,不同空间进程无法交互
挂载命名空间 隔离挂载点 隔离文件目录 进程运行时可以将挂载点与系统分离,使用这个功能时,我们可以达到 chroot 的功能,而在安全性方面比 chroot 更高
UTS命名空间 隔离Hostname和NIS域名 让容器拥有独立的主机名和域名,从而让容器看起来像个独立的主机 目的是独立出主机名和网络信息服务(NIS)
用户命名空间 隔离用户和group ID 每个容器内上的用户跟宿主主机上不在一个命名空间 同进程 ID 一样,用户 ID 和组 ID 在命名空间内外是不一样的,并且在不同命名空间内可以存在相同的 ID

3.NameSpace应用案例

以net namespace为例:

  • 在 Linux 中,网络命名空间可以被认为是隔离的拥有单独网络栈(网卡、路由转发表、iptables)的环境。网络命名空间经常用来隔离网络设备和服务,只有拥有同样网络命名空间的设备,才能看到彼此。
  • 从逻辑上说,网络命名空间是网络栈的副本,拥有自己的网络设备、路由选择表、邻接表、Netfilter表、网络套接字、网络procfs条目、网络sysfs条目和其他网络资源。
  • 从系统的角度来看,当通过clone()系统调用创建新进程时,传递标志CLONE_NEWNET将在新进程中创建一个全新的网络命名空间。
  • 从用户的角度来看,我们只需使用工具ip(package is iproute2)来创建一个新的持久网络命名空间。

3.1 创建net命名空间

创建名称为msb的网络命名空间

# ip netns add msb

查看已创建的网络命名空间

# ip netns ls

msb

3.2 删除net命名空间

删除已创建的网络命名空间

# ip netns delete msb

3.3 在net命名空间中执行命令

在网络命名空间中执行bash命令,如果想退出,需要使用exit

# ip netns exec msb bash

3.4 在net命令空间中执行查看网络连接(网卡)命令

在网络命名空间中查看网络命名空间中的网卡信息
# ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
在Linux主机系统中查看
# ip netns exec msb ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

3.5 退出当前的net命名空间

退出已进入的网络命名空间

# exit

exit

3.6 在net命名空间中执行多条命令

在网络命名空间中查看路由表
# route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
在网络命名空间中查看防火墙规则
# iptables -t nat -nL
Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination         
Chain INPUT (policy ACCEPT)
target     prot opt source               destination         
Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination         
Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination

3.7 创建虚拟网卡

同时创建一对虚拟网卡
创建虚拟网卡对
# ip link add veth0 type veth peer name veth1
在物理机上查看
# ip a s
......
10: veth1@veth0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether de:44:f8:b7:12:65 brd ff:ff:ff:ff:ff:ff
11: veth0@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 46:5e:89:8c:cb:b3 brd ff:ff:ff:ff:ff:ff

3.8 迁移虚拟网卡到命名空间中

这两个网卡还都属于“default”或“global”命名空间,和物理网卡一样。把其中一个网卡转移到命名空间msb中。
把创建的veth1网卡添加到msb网络命名空间中
# ip link set veth1 netns msb
在Linux系统命令行查看网络命名空间中的网络
# ip netns exec msb ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
10: veth1@if11: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether de:44:f8:b7:12:65 brd ff:ff:ff:ff:ff:ff link-netnsid 0

3.9 命名空间中迁出虚拟网卡

在Linux系统命令行把虚拟网卡veth1从网络命名空间删除
# ip netns exec msb ip link delete veth1
在Linux系统命令行查看结果
# ip netns exec msb ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

3.10 配置虚拟网卡IP地址

再次创建虚拟网卡,添加到msb网络命名空间,并设置IP地址
# ip link add veth0 type veth peer name veth1
# ip link set veth1 netns msb
# ip netns exec msb ip addr add 192.168.50.2/24 dev veth1
在Linux系统命令行查看网络状态
# ip netns exec msb ip addr
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
12: veth1@if13: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether fe:20:ac:a8:13:4c brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 192.168.50.2/24 scope global veth1
       valid_lft forever preferred_lft forever
启动虚拟网卡,veth1与lo全部要启动
# ip netns exec msb ip link set veth1 up
# ip netns exec msb ip link set lo up
为物理机veth0添加IP地址
# ip a s
......
15: veth0@if14: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group defau
lt qlen 1000
    link/ether 2e:b4:40:c8:73:dc brd ff:ff:ff:ff:ff:ff link-netnsid 0
# ip addr add 192.168.50.3/24 dev veth0
# ip a s veth0
15: veth0@if14: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 2e:b4:40:c8:73:dc brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 192.168.50.3/24 scope global veth0
       valid_lft forever preferred_lft forever
# ip link set veth0 up
在宿主机上ping msb中的veth1
# ping 192.168.50.2
PING 192.168.50.2 (192.168.50.2) 56(84) bytes of data.
64 bytes from 192.168.50.2: icmp_seq=1 ttl=64 time=0.102 ms
64 bytes from 192.168.50.2: icmp_seq=2 ttl=64 time=0.068 ms
64 bytes from 192.168.50.2: icmp_seq=3 ttl=64 time=0.068 ms
在msb中的veth1 ping 宿主机上veth0
# ip netns exec msb ping 192.168.50.3
PING 192.168.50.3 (192.168.50.3) 56(84) bytes of data.
64 bytes from 192.168.50.3: icmp_seq=1 ttl=64 time=0.053 ms
64 bytes from 192.168.50.3: icmp_seq=2 ttl=64 time=0.031 ms
64 bytes from 192.168.50.3: icmp_seq=3 ttl=64 time=0.029 ms
如果需要访问本机的其它网段,可手动添加如下默认路由条目。
# ip netns exec msb ip route add default via 192.168.50.3
关于如何ping通外网主机,可设置路由转发完成  net.ipv4.ip_forward=1
相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
数据可视化
echarts图表坐标轴数据标签添加下划线
echarts图表坐标轴数据标签添加下划线
425 0
|
Linux Python
如何更新pip源
如何更新pip源
|
9月前
|
人工智能 Cloud Native IDE
通义灵码2.0评测报告
通义灵码是一款强大的编程助手,首次使用是在参加天池大赛云原生编程挑战赛时。它以插件形式集成于IDE中,极大简化了理解项目的过程。只需基于代码提问,即可快速获取相关信息,大大提高了开发效率。近期推出的2.0版本支持Deep Seek模型,AI程序员功能更加强大,提供上下文和需求解析,使编程更加便捷高效。随着AI在各行业的普及,掌握AI工具成为程序员不可或缺的技能。加油!
227 1
|
人工智能 Prometheus 监控
【LLMOps】Paka:大模型管理应用平台部署实践
【4月更文挑战第11天】Paka大模型管理及应用平台介绍
470 0
|
缓存 安全 生物认证
什么是代理ip?代理ip的工作原理?代理ip有哪些类型?
当您在互联网上浏览或访问网站时,您的IP地址是您的设备在网络上的唯一标识。通过IP地址,网站和其他在线服务可以追踪您的位置、活动和访问历史。但是,使用IP代理可以帮助您代理本地IP地址,从而增加您的在线隐私和安全。
什么是代理ip?代理ip的工作原理?代理ip有哪些类型?
|
JavaScript 前端开发 程序员
《JavaScript权威指南第7版》中文PDF+英文PDF+源代码 +JavaScript权威指南(第6版)(附源码)PDF下载阅读分享推荐
JavaScript是Web标准语言,广泛应用于各类浏览器,造就了其最广泛部署的地位。Node.js的兴起扩展了JavaScript的使用场景,使其成为开发者首选语言。无论新手还是经验丰富的程序员,都能受益于学习JavaScript。[《JavaScript权威指南第7版》资源链接](https://zhangfeidezhu.com/?p=224)
1099 5
《JavaScript权威指南第7版》中文PDF+英文PDF+源代码 +JavaScript权威指南(第6版)(附源码)PDF下载阅读分享推荐
|
安全 Java API
为什么捕获异常后不要使用e.printStackTrace()打印日志
为什么捕获异常后不要使用e.printStackTrace()打印日志
|
Ubuntu NoSQL 关系型数据库
在Ubuntu操作系统上安装/使用/卸载Docker容器引擎
这篇文章详细介绍了在Ubuntu操作系统上安装、配置、使用、基本操作以及卸载Docker容器引擎的步骤,包括配置Docker镜像加速和使用Docker部署Nginx、MySQL和Redis服务器的方法。
324 0
|
API Android开发 Kotlin
kotlin 音频播放,多音轨同时播放,音频播放期间,可以随时设置播放速度
在Android中,`SoundPool` 适合播放短音频但不支持直接改变播放速度。若需调整播放速度,可使用 `AudioTrack` 或 `MediaPlayer`。以下是一个使用 `MediaPlayer` 实现多音轨播放并调整播放速度的简单Kotlin代码示例,特别注意,`setPlaybackParams` 方法在API 23及以上版本才能调整播放速度。别忘了在不再使用时释放 `MediaPlayer` 资源以防止内存泄漏。
|
机器学习/深度学习 数据采集 TensorFlow
TensorFlow实战:构建第一个神经网络模型
【4月更文挑战第17天】本文简要介绍了如何使用TensorFlow构建和训练一个简单的神经网络模型,解决手写数字识别问题。首先,确保安装了TensorFlow,然后了解神经网络基础、损失函数和优化器以及TensorFlow的基本使用。接着,通过导入TensorFlow、准备MNIST数据集、数据预处理、构建模型(使用Sequential API)、编译模型、训练和评估模型,展示了完整的流程。这个例子展示了TensorFlow在深度学习中的应用,为进一步探索复杂模型打下了基础。