如何正确拆分数据集?常见的三种方法总结

简介: 如何正确拆分数据集?常见的三种方法总结

将数据集分解为训练集,可以帮助我们了解模型,这对于模型如何推广到新的看不见数据非常重要。如果模型过度拟合可能无法很好地概括新的看不见的数据。因此也无法做出良好的预测。

拥有适当的验证策略是成功创建良好预测,使用AI模型的业务价值的第一步,本文中就整理出一些常见的数据拆分策略。

简单的训练、测试拆分


将数据集分为训练和验证2个部分,并以80%的训练和20%的验证。可以使用Scikit的随机采样来执行此操作。

首先需要固定随机种子,否则无法比较获得相同的数据拆分,在调试时无法获得结果的复现。如果数据集很小,则不能保证验证拆分可以与训练拆分不相关。如果数据不平衡,也无法获得相同的拆分比例。

所以简单的拆分只能帮助我们开发和调试,真正的训练还不够完善,所以下面这些拆分方法可以帮助u我们结束这些问题。

K折交叉验证


将数据集拆分为k个分区。在下面的图像中,数据集分为5个分区。

选择一个分区作为验证数据集,而其他分区则是训练数据集。这样将在每组不同的分区上训练模型。

最后,将最终获得K个不同的模型,后面推理预测时使用集成的方法将这些模型一同使用。

K通常设置为[3,5,7,10,20]

如果要检查模型性能低偏差,则使用较高的K [20]。如果要构建用于变量选择的模型,则使用低k [3,5],模型将具有较低的方差。

优点:

  • 通过平均模型预测,可以提高从相同分布中提取的未见数据的模型性能
  • 这是一种广泛使用的来获取良好的生产模型的方法
  • 可以使用不同的集成技术可以为数据集中的每个数据创建预测,并且利用这些预测进行模型的改善,这被称为OOF(out- fold prediction)。


问题:

  • 如果有不平衡的数据集,请使用Stratified-kFold
  • 如果在所有数据集上重新训练一个模型,那么就不能将其性能与使用k-Fold进行训练的任何模型进行比较。因为这个的模型是在k-1上训练的,不是对整个数据集

Stratified-kFold


可以保留每折中不同类之间的比率。如果数据集不平衡,例如Class1有10个示例,并且Class2有100个示例。Stratified-kFold创建的每个折中分类的比率都与原始数据集相同

这个想法类似于K折的交叉验证,但是每个折叠的比率与原始数据集相同。

每种分折中都可以保留类之间的初始比率。如果您的数据集很大,K折的交叉验证也可能会保留比例,但是这个是随机的,而Stratified-kFold是确定的,并且可以用于小数据集。

Bootstrap和Subsampling


Bootstrap和Subsampling类似于K-Fold交叉验证,但它们没有固定的折。它从数据集中随机选取一些数据,并使用其他数据作为验证并重复n次。

Bootstrap=交替抽样,这个我们在以前的文章中有详细的介绍。

什么时候使用他呢?bootstrap和Subsamlping只能在评估度量误差的标准误差较大的情况下使用。这可能是由于数据集中的异常值造成的。

总结


通常在机器学习中,使用k折交叉验证作为开始,如果数据集不平衡则使用Stratified-kFold,如果异常值较多可以使用Bootstrap或者其他方法进行数据分折改进。

目录
相关文章
|
数据挖掘
【SPSS】回归分析详细操作教程(附案例实战)(下)
【SPSS】回归分析详细操作教程(附案例实战)
2595 0
|
安全 Linux iOS开发
Anaconda下载及安装保姆级教程(详细图文)
Anaconda下载及安装保姆级教程(详细图文)
35845 1
Anaconda下载及安装保姆级教程(详细图文)
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
628 1
|
弹性计算 负载均衡 对象存储
手把手教你白嫖阿里云服务器(免费领服务器)
手把手教你白嫖阿里云服务器(免费领服务器)阿里云免费服务器领取,个人和企业用户均可以申请,个人免费服务器1核2GB 每月750小时,企业u1服务器2核8GB免费使用3个月,阿里云百科分享阿里云免费服务器申请入口、个人和企业免费配置、申请资格条件及云服务器免费使用时长
1339 0
|
机器学习/深度学习 人工智能 算法
图解机器学习 | KNN算法及其应用
KNN算法(K近邻算法)是一种很朴实的机器学习方法,既可以做分类,也可以做回归。本文详细讲解KNN算法相关的知识,包括:核心思想、算法步骤、核心要素、缺点与改进等。
4723 1
图解机器学习 | KNN算法及其应用
|
JSON 算法 vr&ar
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
本文介绍了如何使用COCO评估器通过Detectron2库对目标检测模型进行性能评估,生成coco_instances_results.json文件,并利用pycocotools解析该文件以计算AP、AR、MR和DR等关键指标。
1186 1
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
|
机器学习/深度学习 数据采集 算法
【机器学习】基于机器学习的分类算法对比实验
【机器学习】基于机器学习的分类算法对比实验
697 6
【机器学习】基于机器学习的分类算法对比实验
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。