这10个Python机器学习库,你用过哪些?

简介: 这10个Python机器学习库,你用过哪些?

1. Awkward Array

根据官方介绍,Awkward Array用于嵌套的、大小不一的数据,包括任意长度的列表、记录、混合的类型和缺失数据,使用起来类似NumPy

看起来像是升级版的NumPy呀。

果然,不同长度的数组可以直接放在一起运算。

并且,官方表示Awkward Array不仅使用起来更简便,在速度内存上也有量级的优势。

看看是不是可以安排上了~

https://pypi.org/project/awkward/

2. Jupytext

相信大家对Jupyter Notebook都不陌生。

当你有了Jupytext这个小插件就可以将Jupyter Notebook和IDE完美结合,听起来是不是很棒!

从此Jupyter Notebook可以被存储为Markdown文件或多种语言的脚本文件。

Jupytext可以做的事主要有:

  • Jupyter Notebook的版本控制
  • 在你喜欢的文本编辑器中编辑、合并或重构Notebook
  • 在Notebook上使用Q&A检查

在Python中使用的样子:

此项目在Github上已有5k+star。

https://github.com/mwouts/jupytext

3. Gradio

比Streamlit还轻量UI设计库Gradio让你轻松在浏览器中“玩转”你的模型,可以直接在浏览器中拖放图片,粘贴文字,录制声音,等等。

只要将launch()函数中的参数设置为share=True,还能得到一个可分享网址,拿到链接的朋友在电脑和手机端都能打开,活脱脱就是一个小程序

时常需要做Demo的小伙伴快看起来吧,此项目在Github上已有4.5k+star。

https://github.com/gradio-app/gradio

4. Hub

这个Hub在数据管理和数据预处理上可是一把好手。

它可以处理任何类型任何大小的数据,并且因为数据储存在云端上,所以可以无缝在任何机器上访问。

被压缩为二进制字节的数据可以被存储在任何地方,并且只有在需要的时候才会被获取,所以没有TB级硬盘也可以处理TB级数据

Hub贴心地提供了重要API,支持数据在常用工具(PyTorch等)上的使用,数据版本控制,数据转换等功能。

此项目在github上已有4.1k+star。

https://github.com/activeloopai/Hub

5. AugLy

AugLy是facebook最新推出的数据增强库,同时支持语音文本图像视频类型的数据,包含了100多种增强方式。

数据对于模型训练至关重要,而标注大规模数据十分困难。由于人力资源,和模型特性的限制,数据增强的应用越来越广泛。

AugLy的优点

  • 处理类型更为全面。其他的数据增强库,例如Albumentations和NVIDIA DALI,主要负责图像相关数据的处理,文字数据不支持。
  • 处理方式十分人性化。AugLy可以将一张图片做成备忘录,在图片/视频上叠加文字/Emojis,转发社交媒体上的截图,还可以帮助你处理诸如拷贝检测、仇恨言论检测或版权侵权等问题。

此项目在Github上已有4.1k+star。

https://github.com/facebookresearch/AugLy

6. Evidently

Evidently是用来监测模型效果的工具,可从Pandas DataFrame或csv文件中生成交互式可视化报告JSON格式效果简介。在Jupyter Notebook中可以使用。

目前可以提供6种报告:数据漂移、数值目标漂移、分类目标漂移、回归模型性能、分类模型性能和概率分类模型性能。

此项目在Github上已有1.8k+star。

https://github.com/evidentlyai/evidently

7. YOLOX

如果你熟悉YOLO的话,那你或许会对旷视今年推出的YOLOX感兴趣。

YOLO就是那个目标检测算法,可以被使用在汽车自动驾驶等前沿技术中。

YOLOX是YOLO的无锚版本,设计更简单,但性能更好!它的目标是在研究界和工业界之间架起一座桥梁,同时弥合两方之间的差距。

这个Github上的开源项目在短短半年内已获得5.2k+star。

https://github.com/Megvii-BaseDetection/YOLOX

8. LightSeq

正如它的名字一样,LightSeq是一款由字节跳动开发的支持BERT、GPT、Transformer等众多模型的超快推理引擎。

可以看到它的表现,比FasterTransformer还要Fast

LightSeq支持的模型也是非常全面

总之就是两个字“好用”。此项目在Github上已有1.9k+star。

https://github.com/bytedance/lightseq

9. Greykite

想预测COVID-19的恢复速度吗?那就来看看LinkedIn为了自家时间序列预测需求开发的Greykite吧。

功能全面(多种时间趋势),界面直观,预测速度快和可扩展性强是它最大的亮点。

被应用在上面的三大算法:

  • Silverkite (Greykite’s flagship algorithm)
  • Facebook Prophet
  • Auto Arima

感兴趣的话就去研究看看吧,此项目在Github上已有1.4k+star。

https://github.com/linkedin/greykite

10. Jina and Finetuner

如今,在搜索引擎等应用上,语义识别的地位越来越高,因为它可以有效避免字词匹配的局限。

不过语义识别涉及的神经网络可能会让很多人感到头大,JinaFinetuner可以帮你解决这些问题。

Jina是一个神经搜索框架,使任何人都能在几分钟内建立可扩展的深度学习搜索应用程序。

Finetuner配合Jina帮助你对神经网络进行调参,以获得神经搜索任务的最佳结果。

Jina和Finetuner适合没什么经验,又想尝试的朋友。

https://github.com/jina-ai/finetuner

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
124 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
65 2
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
138 1
|
2月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
176 1
|
2月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
82 3
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
40 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
57 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
77 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练