1. 易混淆操作
本节对一些 Python 易混淆的操作进行对比。
1.1 有放回随机采样和无放回随机采样
import random random.choices(seq, k=1) # 长度为k的list,有放回采样 random.sample(seq, k) # 长度为k的list,无放回采样
1.2 lambda 函数的参数
func = lambda y: x + y # x的值在函数运行时被绑定 func = lambda y, x=x: x + y # x的值在函数定义时被绑定
1.3 copy 和 deepcopy
import copy y = copy.copy(x) # 只复制最顶层 y = copy.deepcopy(x) # 复制所有嵌套部分
复制和变量别名结合在一起时,容易混淆:
a = [1, 2, [3, 4]] # Alias. b_alias = a assert b_alias == a and b_alias is a # Shallow copy. b_shallow_copy = a[:] assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2] # Deep copy. import copy b_deep_copy = copy.deepcopy(a) assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]
对别名的修改会影响原变量,(浅)复制中的元素是原列表中元素的别名,而深层复制是递归的进行复制,对深层复制的修改不影响原变量。
1.4 == 和 is
x == y # 两引用对象是否有相同值 x is y # 两引用是否指向同一对象
1.5 判断类型
type(a) == int # 忽略面向对象设计中的多态特征 isinstance(a, int) # 考虑了面向对象设计中的多态特征
1.6 字符串搜索
str.find(sub, start=None, end=None); str.rfind(...) # 如果找不到返回-1 str.index(sub, start=None, end=None); str.rindex(...) # 如果找不到抛出ValueError异常
1.7 List 后向索引
这个只是习惯问题,前向索引时下标从0开始,如果反向索引也想从0开始可以使用~。
print(a[-1], a[-2], a[-3]) print(a[~0], a[~1], a[~2])
2. 常用工具
2.1 读写 CSV 文件
import csv # 无header的读写 with open(name, 'rt', encoding='utf-8', newline='') as f: # newline=''让Python不将换行统一处理 for row in csv.reader(f): print(row[0], row[1]) # CSV读到的数据都是str类型 with open(name, mode='wt') as f: f_csv = csv.writer(f) f_csv.writerow(['symbol', 'change']) # 有header的读写 with open(name, mode='rt', newline='') as f: for row in csv.DictReader(f): print(row['symbol'], row['change']) with open(name, mode='wt') as f: header = ['symbol', 'change'] f_csv = csv.DictWriter(f, header) f_csv.writeheader() f_csv.writerow({'symbol': xx, 'change': xx})
注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决
import sys csv.field_size_limit(sys.maxsize)
csv 还可以读以 \t 分割的数据
f = csv.reader(f, delimiter='\t')
2.2 迭代器工具
itertools 中定义了很多迭代器工具,例如子序列工具:
import itertools itertools.islice(iterable, start=None, stop, step=None) # islice('ABCDEF', 2, None) -> C, D, E, F itertools.filterfalse(predicate, iterable) # 过滤掉predicate为False的元素 # filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6 itertools.takewhile(predicate, iterable) # 当predicate为False时停止迭代 # takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4 itertools.dropwhile(predicate, iterable) # 当predicate为False时开始迭代 # dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1 itertools.compress(iterable, selectors) # 根据selectors每个元素是True或False进行选择 # compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F
序列排序:
sorted(iterable, key=None, reverse=False) itertools.groupby(iterable, key=None) # 按值分组,iterable需要先被排序 # groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6) itertools.permutations(iterable, r=None) # 排列,返回值是Tuple # permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC itertools.combinations(iterable, r=None) # 组合,返回值是Tuple itertools.combinations_with_replacement(...) # combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD
多个序列合并:
itertools.chain(*iterables) # 多个序列直接拼接 # chain('ABC', 'DEF') -> A, B, C, D, E, F import heapq heapq.merge(*iterables, key=None, reverse=False) # 多个序列按顺序拼接 # merge('ABF', 'CDE') -> A, B, C, D, E, F zip(*iterables) # 当最短的序列耗尽时停止,结果只能被消耗一次 itertools.zip_longest(*iterables, fillvalue=None) # 当最长的序列耗尽时停止,结果只能被消耗一次
2.3 计数器
计数器可以统计一个可迭代对象中每个元素出现的次数。
import collections # 创建 collections.Counter(iterable) # 频次 collections.Counter[key] # key出现频次 # 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素 collections.Counter.most_common(n=None) # 插入/更新 collections.Counter.update(iterable) counter1 + counter2; counter1 - counter2 # counter加减 # 检查两个字符串的组成元素是否相同 collections.Counter(list1) == collections.Counter(list2)
2.4 带默认值的 Dict
当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。
import collections collections.defaultdict(type) # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
2.5 有序 Dict
import collections collections.OrderedDict(items=None) # 迭代时保留原始插入顺序
3. 高性能编程和调试
3.1 输出错误和警告信息
向标准错误输出信息
import sys sys.stderr.write('')
输出警告信息
import warnings warnings.warn(message, category=UserWarning) # category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
控制警告消息的输出
$ python -W all # 输出所有警告,等同于设置warnings.simplefilter('always') $ python -W ignore # 忽略所有警告,等同于设置warnings.simplefilter('ignore') $ python -W error # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')
3.2 代码中测试
有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:
# 在代码中的debug部分 if __debug__: pass
一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:
$ python -0 main.py
3.3 代码风格检查
使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误
pylint main.py
3.4 代码耗时
耗时测试
$ python -m cProfile main.py
测试某代码块耗时
# 代码块耗时定义 from contextlib import contextmanager from time import perf_counter @contextmanager def timeblock(label): tic = perf_counter() try: yield finally: toc = perf_counter() print('%s : %s' % (label, toc - tic)) # 代码块耗时测试 with timeblock('counting'): pass
代码耗时优化的一些原则
- 专注于优化产生性能瓶颈的地方,而不是全部代码。
- 避免使用全局变量。局部变量的查找比全局变量更快,将全局变量的代码定义在函数中运行通常会快 15%-30%。
- 避免使用.访问属性。使用 from module import name 会更快,将频繁访问的类的成员变量 self.member 放入到一个局部变量中。
- 尽量使用内置数据结构。str, list, set, dict 等使用 C 实现,运行起来很快。
- 避免创建没有必要的中间变量,和 copy.deepcopy()。
- 字符串拼接,例如 a + ':' + b + ':' + c 会创造大量无用的中间变量,':',join([a, b, c]) 效率会高不少。另外需要考虑字符串拼接是否必要,例如 print(':'.join([a, b, c])) 效率比 print(a, b, c, sep=':') 低。
4. Python 其他技巧
4.1 argmin 和 argmax
items = [2, 1, 3, 4] argmin = min(range(len(items)), key=items.__getitem__)
argmax同理。
4.2 转置二维列表
A = [['a11', 'a12'], ['a21', 'a22'], ['a31', 'a32']] A_transpose = list(zip(*A)) # list of tuple A_transpose = list(list(col) for col in zip(*A)) # list of list
4.3 一维列表展开为二维列表
A = [1, 2, 3, 4, 5, 6] # Preferred. list(zip(*[iter(A)] * 2))