7个Pandas&Jupyter特殊技巧,让Python数据分析更轻松

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 7个Pandas&Jupyter特殊技巧,让Python数据分析更轻松

本文列举了一些提升日常数据分析工作的技巧,包括:


1. Pandas Profiling2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据3. IPython 魔术命令4. Jupyter 中的格式编排5. Jupyter 快捷键6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出7. 为 Jupyter Notebook 即时创建幻灯片


1. Pandas Profiling


该工具效果明显。下图展示了调用 df.profile_report() 这一简单方法的结果:


使用该工具只需安装和导入 Pandas Profiling 包。


本文不再详述这一工具,如欲了解更多,请阅读:https://towardsdatascience.com/exploring-your-data-with-just-1-line-of-python-4b35ce21a82d

2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据


「经验丰富的」数据科学家或数据分析师大多对 matplotlib 和 pandas 很熟悉。也就是说,你只需调用 .plot() 方法,即可快速绘制简单的 pd.DataFrame 或 pd.Series:

有点无聊?


这已经很好了,不过是否可以绘制一个交互式、可缩放、可扩展的全景图呢?是时候让 Cufflinks* *出马了!(Cufflinks 基于 Plotly 做了进一步的包装。)


在环境中安装 Cufflinks,只需在终端中运行! pip install cufflinks --upgrade 即可。查看下图:


效果好多了!


注意,上图唯一改变的是 Cufflinks cf.go_offline() 的导入和设置,它将 .plot() 方法变为 .iplot()。


其他方法如 .scatter_matrix() 也可以提供非常棒的可视化结果:

需要做大量数据可视化工作的朋友,可以阅读 Cufflinks 和 Plotly 的文档,发现更多方法。


3. IPython 魔术命令


IPython 的「魔术」是 IPython 基于 Python 标准语法的一系列提升。魔术命令包括两种方法:行魔术命令(line magics):以 % 为前缀,在单个输入行上运行;单元格魔术命令(cell magics):以 %% 为前缀,在多个输入行上运行。下面列举了 IPython 魔术命令提供的一些有用功能:


%lsmagic:找出全部命令


如果你只记得一个魔术命令,那必须得是这一个。执行 %lsmagic 命令将提供所有可用魔术命令的列表:


%debug:交互式 debug


这可能是我最常使用的魔术命令了。


大部分数据科学家都遇到过这种情况:执行的代码块一直 break,你绝望地写了 20 个 print() 语句,想输出每个变量的内容。然后,当你最终修复问题后,你还得返回并再次删除所有 print() 语句。


不过以后再也不用这样了。遇到问题后只需执行 %debug 命令,即可执行想要运行的任意代码部分:



上图中发生了什么?


  1. 我们有一个函数,它以列表为输入,并对所有的偶数取平方值。
  2. 我们运行函数,但是出了些问题。但是我们并不知道怎么回事!
  3. 对该函数使用%debug 命令。
  4. 让调试器告诉我们 x 和 type(x) 的值。
  5. 问题显而易见:我们把'6'作为字符串输入到函数中了!


这对于更复杂的函数非常有用。


%store:在 notebook 之间传递变量


这个命令也很酷。假设你花了一些时间清洗 notebook 中的数据,现在你想在另一个 notebook 中测试一些功能,那么你是在同一个 notebook 中实现该功能,还是保存数据并在另一个 notebook 中加载数据呢?使用%store 命令后,这些操作都不需要!该命令将存储变量,你可以在其他任意 notebook 中检索该变量:



  • %store [variable] 存储变量。
  • %store -r [variable] 读取/检索存储变量。



%who:列出所有全局变量。


你是否遇到过,为变量赋值后却忘记变量名的情况?或者不小心删掉了负责为变量赋值的单元格?使用%who 命令,你可以得到所有全局变量的列表:


%%time:计时魔法命令


使用该命令可以获取所有计时信息。只需对任意可执行代码应用%%time 命令,你就可以得到如下输出:



%%writefile:向文件写入单元格内容


在 notebook 中写复杂函数或类,且想将其保存到专属文件中时,该魔法命令非常有用。只需为函数或类的单元格添加 %%writefile 前缀和想要保存到的文件名即可:


如上所示,我们可以将创建的函数保存到 utils.py 文件中,然后就可以随意导入了。在其他 notebook 中也可以这样,只要与 utils.py 文件属于同一个目录即可。


4. Jupyter 中的格式编排


这个工具很酷!Jupyter 考虑到 markdown 中存在 HTML / CSS 格式。以下是我最经常使用的功能:


蓝色、时尚:

<div class="alert alert-block alert-info">   This is <b>fancy</b>!</div>


红色、轻微慌张:

<div class="alert alert-block alert-danger">   This is <b>baaaaad</b>!</div>


绿色、平静:


<div class="alert alert-block alert-success"> This is <b>gooood</b>!</div>

下图展示了它们的运行过程:


当你想以 Notebook 格式呈现一些发现时,这非常有用!

5. Jupyter 快捷键


想了解和学习键盘快捷键,你可以使用命令面板:Ctrl + Shift + P,获取 notebook 所有功能的列表。下面选取了几个最基础的命令:


  • Esc:进入命令模式。在命令模式内,你可以使用方向键在 notebook 内进行导航。


在命令模式内:


  • A 和 B:在当前单元格上方(Above)或下方(Below)插入新的单元格。
  • M:当前单元格转入 Markdown 状态。
  • Y:当前单元格转入 code 状态。
  • D,D:删除当前单元格。
  • Enter:当前单元格回到编辑模式。


在编辑模式内:


  • Shift + Tab:为你在当前单元格中键入的对象提供文档字符串(文档),持续使用该快捷键,可循环使用文档模式。
  • Ctrl + Shift + -:在光标所在处分割当前单元格。
  • Esc + F:查找并替换代码(不包括输出)。
  • Esc + O:切换单元格输出。


选择多个单元格:


  • Shift + Down 和 Shift + Up:选中下方或上方的单元格。
  • Shift + M:合并选中单元格。


注意,选中多个单元格后,你可以批量执行删除/复制/剪切/粘贴/运行操作。


6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出


想展示 pandas DataFrame 的 .head() 和 .tail(),但由于创建运行 .tail() 方法的额外代码单元过于麻烦而不得不中途放弃,你是否有过这样的经历?现在不用怕了,你可以使用以下代码行展示你想展示的输出:



from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all"


下图展现了多个输出的结果:



7. 为 Jupyter Notebook 即时创建幻灯片


使用 RISE,你可以仅通过一次按键将 Jupyter Notebook 即时转变为幻灯片。而且 notebook 仍然处于活跃状态,你可以在展示幻灯片的同时执行实时编码!

要想使用该工具,你只需通过 conda 或 pip 安装 RISE 即可。


conda install -c conda-forge rise

或者

pip install RISE


现在,你可以点击新按钮,为 notebook 创建不错的幻灯片了:

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
3月前
|
自然语言处理 数据挖掘 数据处理
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
142 3
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
|
3月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
377 0
|
10月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
305 71
|
5月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
328 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
4月前
|
IDE 开发工具 Python
魔搭notebook在web IDE下,使用jupyter notebook,python扩展包无法更新升级
魔搭notebook在web IDE下,使用jupyter notebook,python扩展包无法更新升级,不升级无法使用,安装python扩展包的时候一直停留在installing
99 4
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
190 2
|
10月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
10月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
380 73
|
9月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
254 22
|
8月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。

推荐镜像

更多