快速提升效率的6个pandas使用小技巧

简介: 快速提升效率的6个pandas使用小技巧

1. 从剪切板中创建DataFrame

pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe。

以下面这个excel数据表为例,全部选中,按ctrl+c复制:

然后在python中执行pd.read_clipboard(),就能得到一模一样的dataframe数据表:

pd.read_clipboard()

这功能对经常在excel和python中切换的分析师来说简直是福音,excel中的数据能一键转化为pandas可读格式。

2.  通过数据类型选择columns

数据分析过程可能会需要筛选数据列,比如只需要数值列,以经典的泰坦尼克数据集为例:

import seaborn as sns
# 导出泰坦尼克数据集
df = sns.load_dataset('titanic')
df.head()

查看该数据集各列的数据类型:

df.dtypes

可以看到各列的数据类型不太一样,有int、object、float、bool等。

如果说我只要需要数值列,也就是数据类型为int、float的列,可以通过select_dtypes方法实现:

df.select_dtypes(include='number').head()

选择除数据类型为int外其他的列,注意这里的参数是exclude

df.select_dtypes(exclude='int').head()

也可以选择多种数据类型:

df.select_dtypes(include=['int', 'datetime', 'object']).head()

3. 将strings改为numbers

在pandas中,有两种方法可以将字符串改为数值:

  • astype()方法
  • to_numeric()方法

先创建一个样本dataframe,看看这两种方法有什么不同。

import pandas as pd
df = pd.DataFrame({ 'product': ['A','B','C','D'], 
                   'price': ['10','20','30','40'],
                   'sales': ['20','-','60','-']
                  })
df

product列是字符串类型,price、sales列虽然内容有数字,但它们的数据类型也是字符串。

值得注意的是,price列都是数字,sales列有数字,但空值用-代替了。

df.dtypes

下面我们用astype()方法将price列的数据类型改为int:

df['price'] = df['price'].astype(int)
# 或者用另一种方式
df = df.astype({'price': 'int'})

但如果你同样用astype()方法更改sales列的话就会出现报错:

df['sales'] = df['sales'].astype(int)

原因是sales列里面的内容除了数字外还有-,它是字符串,没办法转化为int

to_numeric()方法却可以解决这一问题,只需要设置参数errors='coerce'

df['sales'] = pd.to_numeric(df['sales'], errors='coerce')
df

现在sale列中的-已经被替换成了NaN,它的数据类型也变成了float

df.dtypes

4. 检测并处理缺失值

有一种比较通用的检测缺失值的方法是info(),它可以统计每列非缺失值的数量。

还是用泰坦尼克数据集:

import seaborn as sns
# 导出泰坦尼克数据集
df = sns.load_dataset('titanic')
df.info()

标红色地方是有缺失值的列,并且给出了非缺失值的数量,你可以计算出该列有多少缺失值。

这样看可能不够直观,那可以用df.isnull().sum()方法很清楚地得到每列有多少缺失值:

df.isnull().sum()

df.isnull().sum().sum()则能够返回该数据集总共有多少缺失值:

df.isnull().sum().sum()

还可以看缺失值在该列的占比是多少,用df.isna().mean()方法:

df.isna().mean()

注意:这里isnull()isna()使用效果一样。

那如何处理缺失值呢?

两种方式:删除和替换。

  • 删除包含缺失值的行:
df.dropna(axis = 0)
  • 删除包含缺失值的列:
df.dropna(axis = 1)
  • 如果一列里缺失值超过10%,则删除该列:
df.dropna(thresh=len(df)*0.9, axis=1)
  • 用一个标量替换缺失值:
df.fillna(value=10)
  • 用上一行对应位置的值替换缺失值:
df.fillna(axis=0, method='ffill')
  • 用前一列对应位置的值替换缺失值:
df.fillna(axis=1, method='ffill')
  • 用下一行对应位置的值替换缺失值:
df.fillna(axis=0, method='bfill')
  • 用后一列对应位置的值替换缺失值:
df.fillna(axis=1, method='bfill')
  • 使用某一列的平均值替换缺失值:
df['Age'].fillna(value=df['Age'].mean(), inplace=True)

当然你还可以用最大最小值、分位数值等来替换缺失值。

5. 对连续数据进行离散化处理

在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。

同样以泰坦尼克数据集为例,里面有一列是年龄特征age:

import seaborn as sns
# 导出泰坦尼克数据集
df = sns.load_dataset('titanic')
df['age'].head()

年龄是一段连续值,如果我们想对它进行分组变成分类特征,比如(<=12,儿童)、(<=18,青少年)、(<=60,成人)、(>60,老人),可以用cut方法实现:

import sys
df['ageGroup']=pd.cut(
                    df['age'], 
                    bins=[0, 13, 19, 61, sys.maxsize], 
                    labels=['儿童', '青少年', '成人', '老人']
                      )
df.head()

注意:这里的sys.maxsize是指可以存储的最大值。

可以看到新增了一列ageGroup,用以展示年龄分组:

df['ageGroup'].head()

6. 从多个文件中构建一个DataFrame

有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?

做法是分别读取这些文件,然后将多个dataframe组合到一起,变成一个dataframe。

这里使用内置的glob模块,来获取文件路径,简洁且更有效率。

在上图中,glob()在指定目录中查找所有以“ data_row_”开头的CSV文件。

glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。

「行合并」

假设数据集按行分布在2个文件中,分别是data_row_1.csv和data_row_2.csv

用以下方法可以逐行合并:

files = sorted(glob('data/data_row_*.csv'))
pd.concat((pd.read_csv(file) for file in files), ignore_index=True)

sorted(glob('data/data_row_*.csv'))返回文件名,然后逐个读取,并且使用concat()方法进行合并,得到结果:

「列合并」

假设数据集按列分布在2个文件中,分别是data_row_1.csv和data_row_2.csv

用以下方法可以逐列合并:

files = sorted(glob('data/data_col_*.csv'))
pd.concat((pd.read_csv(file) for file in files), axis=1)

sorted(glob('data/data_row_*.csv'))返回文件名,然后逐个读取,并且使用concat()方法进行列合并(注意这里axis=1),得到结果:

目录
相关文章
CompletableFuture事务处理
CompletableFuture事务处理
382 0
|
Dubbo 关系型数据库 MySQL
nacos常见问题之命名空间配置数据上线修改如何解决
Nacos是阿里云开源的服务发现和配置管理平台,用于构建动态微服务应用架构;本汇总针对Nacos在实际应用中用户常遇到的问题进行了归纳和解答,旨在帮助开发者和运维人员高效解决使用Nacos时的各类疑难杂症。
862 1
|
4月前
|
人工智能 自然语言处理 搜索推荐
AI赋能教育与阿里云通义千问的结合
本简介介绍了AI技术如何赋能教育行业,结合阿里云“通义千问”大模型,助力海豚大数据及人工智能实验平台实现个性化教学、智能答疑与资源优化,推动高校与企业人才培养模式革新,构建终身学习生态体系。
287 0
|
存储 算法 前端开发
深入理解操作系统:进程调度与优先级队列算法
【9月更文挑战第25天】在操作系统的复杂世界中,进程调度是维持系统稳定运行的核心机制之一。本文将深入探讨进程调度的基本概念,分析不同的进程调度算法,并着重介绍优先级队列算法的原理和实现。通过简洁明了的语言,我们将一起探索如何优化进程调度,提高操作系统的效率和响应速度。无论你是计算机科学的初学者还是希望深化理解的专业人士,这篇文章都将为你提供有价值的见解。
|
存储 Java BI
MAT工具定位分析Java堆内存泄漏问题方法
MAT,全称Memory Analysis Tools,是一款分析Java堆内存的工具,可以快速定位到堆内泄漏问题。该工具提供了两种使用方式,一种是插件版,可以安装到Eclipse使用,另一种是独立版,可以直接解压使用。
576 0
|
人工智能 资源调度 自动驾驶
Markov Decision Process,MDP
马尔可夫决策过程(Markov Decision Process,MDP)是一种用于描述决策者在马尔可夫环境中进行决策的数学模型。它由四个核心要素组成:状态(State)、动作(Action)、转移概率(Transition Probability)和奖励(Reward)。在 MDP 中,智能体(Agent)需要在给定的状态下选择一个动作,然后根据状态转移概率和奖励更新状态,最终目标是最大化累积奖励。
293 4
|
JavaScript 前端开发 API
码上开火车-Three.js 3D Web 游戏案例分享
码上开火车-Three.js 3D Web 游戏案例分享
614 0
|
存储 消息中间件 JavaScript
Spring Boot + flowable 快速实现工作流
Spring Boot + flowable 快速实现工作流
Spring Boot + flowable 快速实现工作流
MFC编程 -- 实现拖拽文件获取路径
MFC编程 -- 实现拖拽文件获取路径
284 0
MFC编程 -- 实现拖拽文件获取路径
|
数据可视化 Perl 容器
KUBERNETES03_命名空间、Pod是什么、Deployment多副本能力、扩缩容、自愈或故障转移、滚动更新、版本回退(四)
KUBERNETES03_命名空间、Pod是什么、Deployment多副本能力、扩缩容、自愈或故障转移、滚动更新、版本回退(四)
393 0
KUBERNETES03_命名空间、Pod是什么、Deployment多副本能力、扩缩容、自愈或故障转移、滚动更新、版本回退(四)
下一篇
开通oss服务