全平台都能用的pandas运算加速神器

简介: 全平台都能用的pandas运算加速神器

1 简介

随着其功能的不断优化与扩充,pandas已然成为数据分析领域最受欢迎的工具之一,但其仍然有着一个不容忽视的短板——难以快速处理大型数据集,这是由于pandas中的工作流往往是建立在单进程的基础上,使得其只能利用单个处理器核心来实现各种计算操作,这就使得pandas在处理百万级、千万级甚至更大数据量时,出现了明显的性能瓶颈。

本文要介绍的工具modin就是一个致力于在改变代码量最少的前提下,调用起多核计算资源,对pandas的计算过程进行并行化改造的Python库,并且随着其近期的一系列内容更新,modin基于Dask开始对Windows系统同样进行了支持,使得我们只需要改变一行代码,就可以在所有平台上获得部分pandas功能可观的计算效率提升。

图1

2 基于modin的pandas运算加速

modin支持WindowsLinux以及Mac系统,其中LinuxMac平台版本的modin工作时可基于并行运算框架RayDask,而Windows平台版本目前只支持Dask作为计算后端(因为Ray没有Win版本),安装起来十分方便,可以用如下3种命令来安装具有不同后端的modin

pip install modin[dask] # 安装dask后端
pip install modin[ray] # 安装ray后端(windows不支持)
pip install modin[all] # 推荐方式,自动安装当前系统支持的所有后端

本文在Win10系统上演示modin的功能,执行命令:

pip install modin[all]

成功安装modin+dask之后,在使用modin时,只需要将我们习惯的import pandas as pd变更为import modin.pandas as pd即可,接下来我们来看一下在一些常见功能上,pandasVSmodin性能差异情况。

首先我们分别使用pandasmodin读入一个大小为1.1G的csv文件esea_master_dmg_demos.part1.csv,来自kagglehttps://www.kaggle.com/skihikingkevin/csgo-matchmaking-damage/data),记录了关于热门游戏CS:GO的一些玩家行为数据,因为体积过大,请感兴趣的读者朋友自行去下载:

图2

为了区分他们,在导入时暂时将modin.pandas命名为mpd

图3

可以看到因为是Win平台,所以使用的计算后端为Dask,首先我们来分别读入文件查看耗时:

图4

借助jupyter notebook记录计算时间的插件,可以看到原生的pandas耗时14.8秒,而modin只用了5.32秒,接着我们再来试试concat操作:

图5

可以看到在pandas花了8.78秒才完成任务的情况下,modin仅用了0.174秒,取得了惊人的效率提升。接下来我们再来执行常见的检查每列缺失情况的任务:

图6

这时耗时差距虽然不如concat操作时那么巨大,也是比较可观的,但是modin毕竟是一个处于快速开发迭代阶段的工具,其针对pandas的并行化改造尚未覆盖全部的功能,譬如分组聚合功能。

对于这部分功能,modin会在执行代码时检查自己是否支持,对于尚未支持的功能modin会自动切换到pandas单核后端来执行运算,但由于modin中组织数据的形式与pandas不相同,所以中间需要经历转换:

图7

这种时候modin的运算反而会比pandas慢很多:

图8

因此我对modin持有的态度是在处理大型数据集时,部分应用场景可以用其替换pandas,即其已经完成可靠并行化改造的pandas功能,你可以在官网对应界面(https://modin.readthedocs.io/en/latest/supported_apis/index.html )查看其已经支持及尚未良好支持的功能,,因为modin还处于快速开发阶段,很多目前无法支持的功能也许未来不久就会被加入modin

图9

以上就是本文的全部内容,如有疑问欢迎在评论区与我讨论。

-END-

相关文章
|
3月前
|
Python
掌握pandas中的时序数据分组运算
掌握pandas中的时序数据分组运算
|
11月前
|
前端开发 Python
Python 教程之 Pandas(12)—— series 的二元运算
Python 教程之 Pandas(12)—— series 的二元运算
61 0
|
JSON 数据可视化 数据挖掘
python数据可视化开发(2):pandas读取Excel的数据格式处理(数据读取、指定列数据、DataFrame转json、数学运算、透视表运算输出)
python数据可视化开发(2):pandas读取Excel的数据格式处理(数据读取、指定列数据、DataFrame转json、数学运算、透视表运算输出)
374 0
|
5月前
|
存储 SQL 算法
【源码解析】深入解析 pandas的Block 类中算术运算和重排实现
【源码解析】深入解析 pandas的Block 类中算术运算和重排实现
|
6月前
|
Python
Python 教程之 Pandas(12)—— series 的二元运算
Python 教程之 Pandas(12)—— series 的二元运算
53 0
Python 教程之 Pandas(12)—— series 的二元运算
|
数据采集 数据挖掘 索引
pandas数据分析之数据运算(逻辑运算、算术运算、统计运算、自定义运算)
数据分析离不开数据运算,在介绍完pandas的数据加载、排序和排名、数据清洗之后,本文通过实例来介绍pandas的常用数据运算,包括逻辑运算、算术运算、统计运算及自定义运算。
414 0
|
数据挖掘 索引 Python
Python数据分析与展示:pandas算术和比较运算-11
Python数据分析与展示:pandas算术和比较运算-11
132 0
Python数据分析与展示:pandas算术和比较运算-11
|
数据采集 数据挖掘 索引
数据分析工具Pandas(3):Pandas的对齐运算
数据分析工具Pandas(3):Pandas的对齐运算
236 0
|
数据挖掘 索引 Python
Python数据分析与展示:pandas算术和比较运算-11
Python数据分析与展示:pandas算术和比较运算-11
157 0
|
索引 Python
03 pandas Series_删改查、运算、缺省
=== 新增、删除=== # 新增/修改 result['化学'] = 100 # 删除 del result['语文'] === 取值操作 === # 取值操作 print('-'*10+'Ser_scores'+'-'*10) scores={...
1114 0