Go 中实现用户的每日限额(比如一天只能领三次福利)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Go 中实现用户的每日限额(比如一天只能领三次福利)

如果你写一个 bug 管理系统,用了这个 PeriodLimit 你就可以限制每个测试人员每天只能给你提一个 bug。工作是不是就轻松很多了?:P

如今微服务架构大行其道本质原因是因为要降低系统的整体复杂度,将系统风险均摊到子系统从而最大化保证系统的稳定性,通过领域划分拆成不同的子系统后各个子系统能独立的开发、测试、发布,研发节奏和效率能明显提高。

但同时也带来了问题,比如:调用链路过长,部署架构复杂度提升,各种中间件需要支持分布式场景。为了确保微服务的正常运行,服务治理就不可或缺了,通常包括:限流,降级,熔断。

其中限流指的是针对接口调用频率进行限制,以免超出承载上限拖垮系统。比如:

  1. 电商秒杀场景
  2. API 针对不同商户限流

常用的限流算法有:

  • 固定时间窗口限流
  • 滑动时间窗口限流
  • 漏桶限流
  • 令牌桶限流

本文主要讲解固定时间窗口限流算法,使用场景比如:

  • 每个手机号每天只能发5条验证码短信
  • 每个用户每小时只能连续尝试3次密码
  • 每个会员每天只能领3次福利

工作原理

从某个时间点开始每次请求过来请求数+1,同时判断当前时间窗口内请求数是否超过限制,超过限制则拒绝该请求,然后下个时间窗口开始时计数器清零等待请求。

优缺点

优点

实现简单高效,特别适合用来限制比如一个用户一天只能发10篇文章、只能发送5次短信验证码、只能尝试登录5次等场景,实际业务中此类场景非常多见。

缺点

固定时间窗口限流的缺点在于无法处理临界区请求突发场景。

假设每 1s 限流 100 次请求,用户在中间 500ms 时开始 1s 内发起 200 次请求,此时 200 次请求是可以全部通过的。这就和我们预期 1s 限流 100 次不合了,根源在于限流的细粒度太粗。

go-zero 代码实现

core/limit/periodlimit.go

go-zero 中使用 redis 过期时间来模拟固定时间窗口。

redis lua 脚本:

-- KYES[1]:限流器key
-- ARGV[1]:qos,单位时间内最多请求次数
-- ARGV[2]:单位限流窗口时间
-- 请求最大次数,等于p.quota
local limit = tonumber(ARGV[1])
-- 窗口即一个单位限流周期,这里用过期模拟窗口效果,等于p.permit
local window = tonumber(ARGV[2])
-- 请求次数+1,获取请求总数
local current = redis.call("INCRBY",KYES[1],1)
-- 如果是第一次请求,则设置过期时间并返回 成功
if current == 1 then
  redis.call("expire",KYES[1],window)
  return 1
-- 如果当前请求数量小于limit则返回 成功
elseif current < limit then
  return 1
-- 如果当前请求数量==limit则返回 最后一次请求
elseif current == limit then
  return 2
-- 请求数量>limit则返回 失败
else
  return 0
end

固定时间窗口限流器定义

type (
  // PeriodOption defines the method to customize a PeriodLimit.
  // go中常见的option参数模式
  // 如果参数非常多,推荐使用此模式来设置参数
  PeriodOption func(l *PeriodLimit)
  // A PeriodLimit is used to limit requests during a period of time.
  // 固定时间窗口限流器
  PeriodLimit struct {
    // 窗口大小,单位s
    period     int
    // 请求上限
    quota      int
    // 存储
    limitStore *redis.Redis
    // key前缀
    keyPrefix  string
    // 线性限流,开启此选项后可以实现周期性的限流
    // 比如quota=5时,quota实际值可能会是5.4.3.2.1呈现出周期性变化
    align      bool
  }
)

注意一下 align 参数,align=true 时请求上限将会呈现周期性的变化。比如quota=5时实际quota可能是5.4.3.2.1呈现出周期性变化

限流逻辑

其实限流逻辑在上面的 lua 脚本实现了,需要注意的是返回值

  • 0:表示错误,比如可能是 redis 故障、过载
  • 1:允许
  • 2:允许但是当前窗口内已到达上限,如果是跑批业务的话此时可以休眠 sleep 一下等待下个窗口(作者考虑的非常细致)
  • 3:拒绝
// Take requests a permit, it returns the permit state.
// 执行限流
// 注意一下返回值:
// 0:表示错误,比如可能是redis故障、过载
// 1:允许
// 2:允许但是当前窗口内已到达上限
// 3:拒绝
func (h *PeriodLimit) Take(key string) (int, error) {
  // 执行lua脚本
  resp, err := h.limitStore.Eval(periodScript, []string{h.keyPrefix + key}, []string{
    strconv.Itoa(h.quota),
    strconv.Itoa(h.calcExpireSeconds()),
  })
  
  if err != nil {
    return Unknown, err
  }
  code, ok := resp.(int64)
  if !ok {
    return Unknown, ErrUnknownCode
  }
  switch code {
  case internalOverQuota:
    return OverQuota, nil
  case internalAllowed:
    return Allowed, nil
  case internalHitQuota:
    return HitQuota, nil
  default:
    return Unknown, ErrUnknownCode
  }
}

这个固定窗口限流可能用来限制比如一个用户一天只能发送5次验证码短信,此时我们就需要跟中国时区对应(GMT+8),并且其实限流时间应该从零点开始,此时我们需要额外对齐(设置 align 为 true)。

// 计算过期时间也就是窗口时间大小
// 如果align==true
// 线性限流,开启此选项后可以实现周期性的限流
// 比如quota=5时,quota实际值可能会是5.4.3.2.1呈现出周期性变化
func (h *PeriodLimit) calcExpireSeconds() int {
  if h.align {
    now := time.Now()
    _, offset := now.Zone()
    unix := now.Unix() + int64(offset)
    return h.period - int(unix%int64(h.period))
  }
  return h.period
}

项目地址

https://github.com/zeromicro/go-zero

相关文章
|
Java 应用服务中间件
程序启动时报: Invalid byte tag in constant pool: 19
程序启动时报: Invalid byte tag in constant pool: 19
715 0
|
存储 NoSQL 应用服务中间件
如何高效存储海量GPS数据
GPS数据使用越来越广,但如何高性能存储海量GPS数据仍然具有挑战,本文会介绍一种非常适合存储GPS数据的存储系统:阿里云NoSQL数据库TableStore,同时会介绍多个不同场景的技术方案。
23854 0
|
SQL Java Maven
Mac下安装DBeaver
Mac下安装DBeaver
1556 0
Mac下安装DBeaver
|
7月前
|
人工智能 Java 测试技术
mockito入门
本内容主要介绍Mockito框架的使用,包括快速上手指南、案例分析和高级用法。涵盖Mockito资源链接、依赖配置及版本要求(4.x支持JDK1.8,5.x需JDK11+)。通过具体代码示例,讲解了Spy与Mock对象的区别及应用场景,如创建真实或虚拟对象、模拟方法调用等。同时深入探讨了做桩技术,包括对具体参数和任意参数的处理,并提供注解方式简化测试代码。此外,针对私有方法的Mock需求,介绍了PowerMockito扩展框架及反射技术的实现方式,强调了设计优化的重要性,建议通过重构避免直接Mock私有方法,以提升测试健壮性和代码可维护性。最后附有参考资料供进一步学习。
612 8
|
缓存 Java Spring
Java本地高性能缓存实践问题之Caffeine中设置刷新机制的问题如何解决
Java本地高性能缓存实践问题之Caffeine中设置刷新机制的问题如何解决
548 1
|
XML Java 数据格式
Spring中Bean注入与获取几种方式详解
Spring中Bean注入与获取几种方式详解
887 0
|
Java 测试技术 数据库
Java一分钟之-Mockito:模拟对象测试
【6月更文挑战第4天】Mockito是Java单元测试中的模拟框架,用于创建和配置模拟对象以隔离测试代码。核心概念包括:模拟对象、预期行为(定义方法调用响应)、验证(检查方法调用)和捕获参数。常见问题包括过度模拟、忽略未使用的模拟调用、不恰当配置和误用Mockito注解。解决方案包括正确选择模拟对象、验证所有交互、仔细配置模拟行为及在测试类中正确使用Mockito注解。提供的代码示例展示了如何使用Mockito模拟和验证方法调用,以实现独立且准确的测试。学习和避免这些易错点可提升测试效率和代码质量。
585 0
Java一分钟之-Mockito:模拟对象测试
|
测试技术
详解单元测试问题之@InjectMocks注入mock对象如何解决
详解单元测试问题之@InjectMocks注入mock对象如何解决
1073 1
|
Java Unix Linux
grep命令的使用方法及实用技巧详解
grep命令的使用方法及实用技巧详解
1732 0
|
SQL 存储 Oracle
一次搞定各种数据库SQL执行计划
执行计划(execution plan,也叫查询计划或者解释计划)是数据库执行 SQL 语句的具体步骤,例如通过索引还是全表扫描访问表中的数据,连接查询的实现方式和连接的顺序等。如果 SQL 语句性能不够理想,我们首先应该查看它的执行计划。
一次搞定各种数据库SQL执行计划