使用Prometheus搞定微服务监控

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: 使用Prometheus搞定微服务监控

最近对服务进行监控,而当前监控最流行的数据库就是 Prometheus,同时 go-zero 默认接入也是这款数据库。今天就对 go-zero 是如何接入 Prometheus ,以及开发者如何自己定义自己监控指标。

监控接入

go-zero 框架中集成了基于 prometheus 的服务指标监控。但是没有显式打开,需要开发者在 config.yaml 中配置:

Prometheus:
  Host: 127.0.0.1
  Port: 9091
  Path: /metrics

如果开发者是在本地搭建 Prometheus,需要在 Prometheus 的配置文件 prometheus.yaml 中写入需要收集服务监控信息的配置:

- job_name: 'file_ds'
    static_configs:
      - targets: ['your-local-ip:9091']
        labels:
          job: activeuser
          app: activeuser-api
          env: dev
          instance: your-local-ip:service-port

因为本地是用 docker 运行的。将 prometheus.yaml 放置在 docker-prometheus 目录下:

docker run \
    -p 9090:9090 \
    -v dockeryml/docker-prometheus:/etc/prometheus \
    prom/prometheus

打开 localhost:9090 就可以看到:

点击 http://service-ip:9091/metrics 就可以看到该服务的监控信息:

上图我们可以看出有两种 bucket,以及 count/sum 指标。

go-zero 是如何集成监控指标?监控的又是什么指标?我们如何定义我们自己的指标?下面就来解释这些问题

以上的基本接入,可以参看我们的另外一篇:https://zeromicro.github.io/go-zero/service-monitor.html

如何集成

上面例子中的请求方式是 HTTP,也就是在请求服务端时,监控指标数据不断被搜集。很容易想到是 中间件 的功能,具体代码:https://github.com/tal-tech/go-zero/blob/master/rest/handler/prometheushandler.go

var (
 metricServerReqDur = metric.NewHistogramVec(&metric.HistogramVecOpts{
  ...
    // 监控指标
  Labels:    []string{"path"},
    // 直方图分布中,统计的桶
  Buckets:   []float64{5, 10, 25, 50, 100, 250, 500, 1000},
 })
 metricServerReqCodeTotal = metric.NewCounterVec(&metric.CounterVecOpts{
  ...
    // 监控指标:直接在记录指标 incr() 即可
  Labels:    []string{"path", "code"},
 })
)
func PromethousHandler(path string) func(http.Handler) http.Handler {
 return func(next http.Handler) http.Handler {
  return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
      // 请求进入的时间
   startTime := timex.Now()
   cw := &security.WithCodeResponseWriter{Writer: w}
   defer func() {
        // 请求返回的时间
    metricServerReqDur.Observe(int64(timex.Since(startTime)/time.Millisecond), path)
    metricServerReqCodeTotal.Inc(path, strconv.Itoa(cw.Code))
   }()
   // 中间件放行,执行完后续中间件和业务逻辑。重新回到这,做一个完整请求的指标上报
      // [🧅:洋葱模型]
   next.ServeHTTP(cw, r)
  })
 }
}

其实整个很简单:

  1. HistogramVec 负责请求耗时搜集:
  • bucket 存放的就是 option 指定的耗时指标。某个请求耗时多少就会被聚集对应的桶,计数。
  • 最终展示的就是一个路由在不同耗时的分布,很直观提供给开发者可以优化的区域。
  1. CounterVec 负责指定 labels 标签搜集:
  • Labels: []string{"path", "code"}
  • labels 相当一个 tuplego-zero 是以(path, code)作为整体,记录不同路由不同状态码的返回次数。如果 4xx,5xx过多的时候,是不是应该看看你的服务健康程度?

如何自定义

go-zero 中也提供了 prometheus metric 基本封装,供开发者自己开发自己 prometheus 中间件。

代码:https://github.com/tal-tech/go-zero/tree/master/core/metric

名称 用途 搜集函数
CounterVec 单一的计数。用作:QPS统计 CounterVec.Inc() 指标+1
GuageVec 单纯指标记录。适用于磁盘容量,CPU/Mem使用率(可增加可减少) GuageVec.Inc()/GuageVec.Add() 指标+1/指标加N,也可以为负数
HistogramVec 反应数值的分布情况。适用于:请求耗时、响应大小 HistogramVec.Observe(val, labels) 记录指标当前对应值,并找到值所在的桶,+1

另外对 HistogramVec.Observe() 做一个基本分析:

我们其实可以看到上图每个 HistogramVec 统计都会有3个序列出现:

  • _count:数据个数
  • _sum:全部数据加和
  • _bucket{le=a1}:处于 [-inf, a1] 的数据个数

所以我们也猜测在统计过程中,分3种数据进行统计:

// 基本上在prometheus的统计都是使用 atomic CAS 方式进行计数的
// 性能要比使用 Mutex 要高
func (h *histogram) observe(v float64, bucket int) {
 n := atomic.AddUint64(&h.countAndHotIdx, 1)
 hotCounts := h.counts[n>>63]
 if bucket < len(h.upperBounds) {
    // val 对应数据桶 +1
  atomic.AddUint64(&hotCounts.buckets[bucket], 1)
 }
 for {
  oldBits := atomic.LoadUint64(&hotCounts.sumBits)
  newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
    // sum指标数值 +v(毕竟是总数sum)
  if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
   break
  }
 }
 // count 统计 +1
 atomic.AddUint64(&hotCounts.count, 1)
}

所以开发者想定义自己的监控指标:

  1. 在使用 goctl 生成API代码指定要生成的 中间件https://zeromicro.github.io/go-zero/middleware.html
  2. 在中间件文件书写自己需要统计的指标逻辑
  3. 当然,开发者也可以在业务逻辑中书写统计的指标逻辑。同上。

上述都是针对 HTTP 部分逻辑的解析,RPC 部分的逻辑类似,你可以在 拦截器 部分看到设计。

总结

本文分析了 go-zero 服务监控指标的逻辑,当然对于一些基础设施的监控,prometheus 可以通过引入对应的 exporter 来完成。

项目地址

https://github.com/tal-tech/go-zero

相关文章
|
3月前
|
Prometheus 监控 Cloud Native
云原生监控实战:Prometheus+Grafana快速搭建指南
云原生监控实战:Prometheus+Grafana快速搭建指南
|
3月前
|
存储 Prometheus 监控
OSS监控体系搭建:Prometheus+Grafana实时监控流量、错误码、存储量(开源方案替代云监控自定义视图)
本方案基于Prometheus构建OSS监控系统,涵盖架构设计、指标采集、可视化、告警及性能优化,助力企业实现高可用、低成本的自建监控体系。
340 1
|
4月前
|
Prometheus 监控 Cloud Native
除了Prometheus,还有哪些工具可以监控Docker Swarm集群的资源使用情况?
除了Prometheus,还有哪些工具可以监控Docker Swarm集群的资源使用情况?
336 79
|
3月前
|
存储 监控 Cloud Native
云原生监控实战:Prometheus+Grafana打造RDS多维度预警体系
本方案构建了基于Prometheus与Thanos的云原生RDS监控体系,涵盖数据采集、存储、可视化与告警全流程。支持10万+QPS采集、90%存储压缩,具备&lt;30秒告警延迟能力。通过自定义指标与智能预警策略,显著提升故障发现效率,实现分钟级响应。
242 5
|
3月前
|
Prometheus 监控 Cloud Native
|
2月前
|
Prometheus 监控 Cloud Native
Docker 部署 Prometheus 和 Grafana 监控 Spring Boot 服务
Docker 部署 Prometheus 和 Grafana 监控 Spring Boot 服务实现步骤
|
6月前
|
Prometheus Kubernetes 监控
Kubernetes监控:Prometheus与AlertManager结合,配置邮件告警。
完成这些步骤之后,您就拥有了一个可以用邮件通知你的Kubernetes监控解决方案了。当然,所有的这些配置都需要相互照应,还要对你的Kubernetes集群状况有深入的了解。希望这份指南能帮助你创建出适合自己场景的监控系统,让你在首次发现问题时就能做出响应。
251 22
|
9月前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
438 20
|
9月前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
715 7
|
9月前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
1147 3