苹果让大模型学会偷懒:更快吐出第一个token,准确度还保住了

简介: 【8月更文挑战第25天】苹果公司在AI领域取得重要进展,推出了一种名为LazyLLM的新方法,该方法专注于提升大型语言模型(LLM)在处理长文本时的推理效率。LazyLLM采用动态token修剪技术,能够在处理过程中灵活选择关键的上下文信息进行计算,避免了不必要的计算开销。这种方法不仅能显著加快LLM的响应速度,还能保持甚至提升模型准确度。多项实验验证了其在不同任务上的有效性和实用性。尽管如此,LazyLLM仍面临模型复杂度、适用范围等方面的挑战。论文已发布于[这里](https://arxiv.org/abs/2407.14057)。

近日,苹果公司的研究团队在人工智能领域取得了一项令人瞩目的突破。他们提出了一种名为LazyLLM的创新方法,旨在提高大型语言模型(LLM)的推理效率,尤其是在处理长上下文时。

LazyLLM的核心思想是动态token修剪,即在LLM的推理过程中,选择性地计算对下一个token预测至关重要的上下文token的键值(KV)缓存。与传统的静态修剪方法不同,LazyLLM允许语言模型在不同的生成步骤中动态地选择不同的上下文token子集,即使这些token在之前的步骤中被修剪掉了。

LLM的推理通常包括两个连续的阶段:预填充阶段和解码阶段。在预填充阶段,模型需要计算所有上下文token的KV缓存,以生成第一个token。然而,对于长上下文来说,这个过程可能会显著增加生成第一个token所需的时间,从而成为整个生成过程的瓶颈。

一个悬而未决的问题是,是否所有上下文token对于生成第一个token都是必要的。为了回答这个问题,苹果的研究团队引入了LazyLLM,它能够让语言模型在预填充和解码阶段都选择性地计算重要的token的KV。

LazyLLM的主要优势在于它能够显著加速LLM的生成过程,同时保持甚至提高模型的准确性。通过选择性地计算重要的token的KV,LazyLLM减少了预填充阶段的计算量,从而加快了生成速度。

研究团队在各种标准数据集上进行了广泛的实验,涵盖了不同的任务。实验结果表明,LazyLLM是一种通用的方法,可以无缝地集成到现有的语言模型中,而无需微调。

例如,在多文档问答任务中,LazyLLM将LLama 2 7B模型的预填充阶段加速了2.34倍,同时保持了准确性。这表明LazyLLM不仅在理论上可行,而且在实际应用中也具有很高的潜力。

尽管LazyLLM在提高LLM推理效率方面取得了显著的成果,但也有一些潜在的问题和挑战需要考虑。

一方面,LazyLLM的动态修剪策略可能会增加模型的复杂性,从而影响其可解释性和可维护性。此外,如何确定哪些token是重要的,以及如何平衡计算量和准确性之间的关系,仍然是一个开放的问题。

另一方面,LazyLLM的加速效果可能会受到任务和数据集的影响。对于某些特定的任务或数据集,LazyLLM可能无法提供明显的加速效果,甚至可能会降低模型的性能。

论文地址:https://arxiv.org/abs/2407.14057

目录
相关文章
|
2月前
|
人工智能 安全 测试技术
当奖励成为漏洞:从对齐本质出发自动越狱大语言模型
【9月更文挑战第26天】在人工智能领域,大型语言模型(LLMs)的广泛应用引发了对其安全性和可靠性的担忧,特别是在面对对抗攻击时的脆弱性。论文《Jailbreaking as a Reward Misspecification Problem》提出将这种脆弱性归因于对齐过程中的奖励误设,并引入ReGap指标来量化这一问题。基于此,研究人员开发了ReMiss系统,用于自动对抗各种目标对齐的LLMs,并在AdvBench基准测试中取得了领先成果。尽管方法存在局限性,但该论文为提升LLMs安全性提供了新方向。[论文链接:https://arxiv.org/pdf/2406.14393]
38 4
|
3月前
|
域名解析 存储 缓存
破解 DNS 缓存的秘密:一个简单实验揭示定时刷新背后的惊人真相!
【8月更文挑战第27天】本文介绍DNS缓存管理的重要性及其实现方法。DNS缓存用于快速响应重复的域名解析请求,但因IP地址变动需定期刷新以确保信息准确。文章提供一个基于Python的示例脚本,模拟DNS缓存刷新过程,包括添加、查询记录以及清除过期项等功能。尽管实际环境中这些任务常由专业DNS服务软件自动处理,但该示例有助于理解DNS缓存的工作机制及其维护策略。
62 0
|
5月前
|
机器学习/深度学习 人工智能 测试技术
两句话,让LLM逻辑推理瞬间崩溃!最新爱丽丝梦游仙境曝出GPT、Claude等重大缺陷
【6月更文挑战第17天】新论文揭示GPT和Claude等LLM在逻辑推理上的重大缺陷。通过《爱丽丝梦游仙境》场景,研究显示这些模型在处理简单常识问题时给出错误答案并过度自信。即使面对明显逻辑矛盾,模型仍坚持错误推理,暴露了现有评估方法的不足。[链接:https://arxiv.org/abs/2406.02061]
348 1
|
6月前
|
数据采集 人工智能 自然语言处理
手机可跑,3.8B参数量超越GPT-3.5!微软发布Phi-3技术报告:秘密武器是洗干净数据
【5月更文挑战第16天】微软发布 Phi-3 技术报告,介绍了一个拥有3.8B参数的新语言模型,超越GPT-3.5,成为最大模型之一。 Phi-3 在手机上运行的特性开启了大型模型移动应用新纪元。报告强调数据清洗是关键,通过优化设计实现高效运行。实验显示 Phi-3 在多项NLP任务中表现出色,但泛化能力和数据隐私仍是挑战。该模型预示着AI领域的未来突破。[[论文链接](https://arxiv.org/pdf/2404.14219.pdf)]
80 2
|
6月前
|
人工智能 自然语言处理 搜索推荐
DeepMind终结大模型幻觉?标注事实比人类靠谱、还便宜20倍,全开源
【4月更文挑战第5天】DeepMind推出开源工具SAFE,挑战大模型的幻觉,提升事实评估准确性和效率。通过自动化和搜索引擎验证,SAFE在成本上比人类标注便宜20倍,且在72%的时间与人类一致,显示了在大规模事实验证中的潜力。然而,依赖谷歌搜索和易受长文本信息过载影响是其局限性。
63 13
DeepMind终结大模型幻觉?标注事实比人类靠谱、还便宜20倍,全开源
|
6月前
|
机器学习/深度学习 数据处理
苹果新研究提升服务大模型效率
【2月更文挑战第29天】苹果公司研发的ReDrafter是一种新型推测解码方法,旨在提高大型语言模型的推理效率。该方法结合双模型和单模型优点,使用轻量级草稿头及递归依赖设计,优化内存和计算资源,降低推理延迟。实验显示,ReDrafter在性能上超越了现有方法,尤其适合需要快速响应的场景。这一突破为大型语言模型的效率提升提供了新思路,但也面临准确性和复杂性权衡以及集成挑战。论文链接:[https://arxiv.org/pdf/2403.09919.pdf](https://arxiv.org/pdf/2403.09919.pdf)
44 2
苹果新研究提升服务大模型效率
|
6月前
|
人工智能 前端开发 测试技术
研究人员测试:GPT-4V生成网页超一半情况比人类效果更好
【2月更文挑战第17天】研究人员测试:GPT-4V生成网页超一半情况比人类效果更好
113 4
研究人员测试:GPT-4V生成网页超一半情况比人类效果更好
|
6月前
|
数据采集 人工智能 算法
【话题文章】人性与机器:解码大型语言模型的‘幻觉’现象
【话题文章】人性与机器:解码大型语言模型的‘幻觉’现象
135 2
|
人工智能 JSON 测试技术
语言模型悄悄偷懒?新研究:​上下文太长,模型会略过中间不看
语言模型悄悄偷懒?新研究:​上下文太长,模型会略过中间不看
125 0
|
人工智能 API
一次10万token!GPT4最强对手史诗升级,百页资料一分钟总结完毕
一次10万token!GPT4最强对手史诗升级,百页资料一分钟总结完毕
191 0