核心系统转型问题之微服务架构并存的问题如何解决

简介: 核心系统转型问题之微服务架构并存的问题如何解决

问题一:服务编排平台为何应深度集成中间件?


服务编排平台为何应深度集成中间件?


参考回答:

服务编排平台应深度集成中间件,以提供一个完整的金融级服务编排解决方案。中间件的集成有助于平台更好地处理服务间的通信、事务管理、负载均衡等关键任务,从而提高服务编排的效率和可靠性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671081



问题二:在向云原生架构转型时,传统单体应用面临哪些挑战?


在向云原生架构转型时,传统单体应用面临哪些挑战?


参考回答:

在向云原生架构转型时,传统单体应用面临着迁移云原生分布式转型的挑战,需要应对技术架构的重塑与变化。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671082



问题三:如何解决微服务架构并存的问题以实现全面云原生分布式转型?


如何解决微服务架构并存的问题以实现全面云原生分布式转型?


参考回答:

通过服务网格(Service Mesh)平台,提供与平台无关、语言无关、轻量无侵入的云原生架构集成与治理能力,可以解决微服务架构并存的问题,实现全面云原生分布式转型。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671083



问题四:服务网格如何支持传统单体应用向Service Mesh转型?


服务网格如何支持传统单体应用向Service Mesh转型?


参考回答:

服务网格支持物理机、虚拟机场景,兼容过渡阶段的容器化和虚拟化混合部署的场景,满足传统单体应用向Service Mesh转型的需求。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671084



问题五:应用系统建设层的主要任务是什么?


应用系统建设层的主要任务是什么?


参考回答:

应用系统建设层提供标准化生产线,屏蔽复杂的云原生技术细节,规范云原生应用开发标准。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671085

相关文章
|
16天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
19天前
|
人工智能 前端开发 编译器
【AI系统】LLVM 架构设计和原理
本文介绍了LLVM的诞生背景及其与GCC的区别,重点阐述了LLVM的架构特点,包括其组件独立性、中间表示(IR)的优势及整体架构。通过Clang+LLVM的实际编译案例,展示了从C代码到可执行文件的全过程,突显了LLVM在编译器领域的创新与优势。
40 3
|
9天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
130 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
16天前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
129 68
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
3天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
18 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
14天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Kernel 层架构
推理引擎的Kernel层负责执行底层数学运算,如矩阵乘法、卷积等,直接影响推理速度与效率。它与Runtime层紧密配合,通过算法优化、内存布局调整、汇编优化及调度优化等手段,实现高性能计算。Kernel层针对不同硬件(如CPU、GPU)进行特定优化,支持NEON、AVX、CUDA等技术,确保在多种平台上高效运行。
66 32
|
14天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
45 4
【AI系统】计算图优化架构
|
4天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
23 3
|
16天前
|
存储 人工智能 监控
【AI系统】推理系统架构
本文深入探讨了AI推理系统架构,特别是以NVIDIA Triton Inference Server为核心,涵盖推理、部署、服务化三大环节。Triton通过高性能、可扩展、多框架支持等特点,提供了一站式的模型服务解决方案。文章还介绍了模型预编排、推理引擎、返回与监控等功能,以及自定义Backend开发和模型生命周期管理的最佳实践,如金丝雀发布和回滚策略,旨在帮助构建高效、可靠的AI应用。
76 15
存储 人工智能 自然语言处理
48 6
下一篇
DataWorks