核心系统转型问题之平衡核心架构中的功能性与非功能性需求如何解决

简介: 核心系统转型问题之平衡核心架构中的功能性与非功能性需求如何解决

问题一:如何平衡核心架构中的功能性与非功能性需求?


如何平衡核心架构中的功能性与非功能性需求?


参考回答:

指出核心架构中“非功能性需求”考虑应大于“功能性需求”,技术架构需统一规划和标准,业务模块可解耦分包,实现“统、分结合”。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671012



问题二:云原生架构下,业务应用与技术平台的关系有何变化?


云原生架构下,业务应用与技术平台的关系有何变化?


参考回答:

在云原生架构下,业务应用需更多考虑底层架构差异,如分布式CAP原则、事务一致性等,这些设计是传统应用与平台间的灰色地带,影响系统整体表现。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671013



问题三:如何评价传统集中式架构下的核心建设模式在云原生架构下的适用性?


如何评价传统集中式架构下的核心建设模式在云原生架构下的适用性?


参考回答:

认为传统集中式架构下的核心建设模式在云原生架构下大多不适用,需引入额外框架、机制与设计,以保障核心系统整体表现。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671014



问题四:某银行D为何选择应用平迁而非架构大变化,结果如何?


某银行D为何选择应用平迁而非架构大变化,结果如何?


参考回答:

某银行D因系统规模大,选择应用平迁至开放平台,未做架构大调整。结果出现性能与可用性问题,开发团队大部分时间用于性能优化,影响新业务开发进度。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671016



问题五:如何定义核心转型的最佳路径?


如何定义核心转型的最佳路径?


参考回答:

指出核心转型最佳路径是追求“P/PC平衡”,即产出和产能平衡。不仅要完成应用迁移,更要升级技术架构能力,以推动更大业务价值产出,成为数字化转型的助推引擎。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/671017

相关文章
|
7天前
|
网络协议 Java 应用服务中间件
框架源码私享笔记(01)Tomcat核心架构功能 | 配置详解
本文首先分享了《活出意义来》一书序言中的感悟,强调成功如同幸福,不是刻意追求就能得到,而是全心投入时的副产品。接着探讨了Tomcat的核心功能与架构解析,包括网络连接器(Connector)和Servlet容器(Container),并介绍了其处理HTTP请求的工作流程。文章还详细解释了Tomcat的server.xml配置文件,涵盖了从顶级容器Server到子组件Connector、Engine、Host、Context等的配置参数及作用,帮助读者理解Tomcat的内部机制和配置方法。
|
11天前
【YashanDB 知识库】如何排查 YMP 报错:”OCI 版本为空或 OCI 的架构和本地系统的架构不符“
**问题现象**:迁移预检查时,因OCI版本为空或架构不符报错。通过查看yasdts日志发现缺少libnsl.so.1依赖库。 **排查步骤**: 1. 查看日志确认缺少的依赖库。 2. 检查OCI客户端路径是否已加入LD_LIBRARY_PATH环境变量。 3. 使用`ldd`命令检查其他缺失的依赖库。 **解决方法**: 1. 下载并安装所需的动态库版本。 2. 若无法联网,查找本地是否有相应库。 3. 如本地有高版本库,创建软链接指向所需版本(如`ln -s /lib64/libnsl.so.2 libnsl.so.1`)。
|
12天前
【YashanDB 知识库】如何排查 YMP 报错:”OCI 版本为空或 OCI 的架构和本地系统的架构不符“
在迁移预检查的版本检查阶段报错“OCI 版本为空”,原因是 OCI 架构与本地系统不符或依赖库缺失。排查发现 `libdrv_oracle.so` 缺少 `libnsl.so.1` 库,尽管 OCI 客户端路径已正确加入 `LD_LIBRARY_PATH`。解决方法包括下载安装相应动态库版本,或通过软链接指向更高版本库(如 `libnsl.so.2`)。总结:确保动态库路径正确配置,并使用 `ldd` 查看依赖库,必要时创建软链接以解决问题。
|
23天前
|
安全 NoSQL MongoDB
XJ-Survey:这个让滴滴日均处理1.2亿次问卷请求的开源系统,今天终于公开了它的架构密码!
嗨,大家好,我是小华同学。今天为大家介绍一款由滴滴开源的高效调研系统——XJ-Survey。它功能强大,支持多类型数据采集、智能逻辑编排、精细权限管理和数据在线分析,适用于问卷、考试、测评等场景。采用 Vue3、NestJS 等先进技术栈,确保高性能与安全性。无论是企业还是个人,XJ-Survey 都是你不可错过的神器!项目地址:[https://github.com/didi/xiaoju-survey](https://github.com/didi/xiaoju-survey)
68 15
|
1月前
|
人工智能 JavaScript 安全
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
98 13
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
|
1月前
|
机器学习/深度学习 缓存 自然语言处理
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
517 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
2月前
|
存储 缓存 关系型数据库
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
78 18
|
3月前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
3月前
|
监控 Java 数据中心
微服务架构系统稳定性的神器-Hystrix
Hystrix是由Netflix开源的库,主要用于微服务架构中的熔断器模式,防止服务调用失败引发级联故障。它通过监控服务调用的成功和失败率,在失败率达到阈值时触发熔断,阻止后续调用,保护系统稳定。Hystrix具备熔断器、资源隔离、降级机制和实时监控等功能,提升系统的容错性和稳定性。然而,Hystrix也存在性能开销、配置复杂等局限,并已于2018年进入维护模式。
50 0
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
95 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法

热门文章

最新文章