redis官网地址:
https://redis.io/
中文网站
http://www.redis.cn/
1.Redis的概述
Redis是一个开源的、使用ANSI C语言编写的key-value的NoSQL数据库。Redis将数据缓存在计算机内存中,然后保存到磁盘中,实现数据的持久化。
2.Redis支持的数据类型
转载自:https://www.cnblogs.com/williamjie/p/11100897.html
redis一共支持五种数据类型
一、字符串
字符串类型是redis最基础的数据结构,首先键是字符串类型,而且其他几种结构都是在字符串类型基础上构建的,所以字符串类型能为其他四种数据结构的学习尊定基础。字符串类型实际上可以是字符串(简单的字符串、复杂的字符串(xml、json)、数字(整数、浮点数)、二进制(图片、音频、视频)),但最大不能超过512M。
使用场景:
缓存功能:字符串最经典的使用场景,redis最为缓存层,Mysql作为储存层,绝大部分请求数据都是redis中获取,由于redis具有支撑高并发特性,所以缓存通常能起到加速读写和降低 后端压力的作用。(redis为何具备支撑高并发的特性,下次文章讲解)。
计数器:许多运用都会使用redis作为计数的基础工具,他可以实现快速计数、查询缓存的功能,同时数据可以一步落地到其他的数据源。如:视频播放数系统就是使用redis作为视频播放数计数的基础组件。
共享session:出于负载均衡的考虑,分布式服务会将用户信息的访问均衡到不同服务器上,用户刷新一次访问可能会需要重新登录,为避免这个问题可以用redis将用户session集中管理,在这种模式下只要保证redis的高可用和扩展性的,每次获取用户更新或查询登录信息都直接从redis中集中获取。
限速:处于安全考虑,每次进行登录时让用户输入手机验证码,为了短信接口不被频繁访问,会限制用户每分钟获取验证码的频率。
二、哈希
在redis中哈希类型是指键本身又是一种键值对结构,如 value={{field1,value1},…fieldN,valueN}}
使用场景:哈希结构相对于字符串序列化缓存信息更加直观,并且在更新操作上更加便捷。所以常常用于用户信息等管理,但是哈希类型和关系型数据库有所不同,哈希类型是稀疏的,而关系型数据库是完全结构化的,关系型数据库可以做复杂的关系查询,而redis去模拟关系型复杂查询,开发困难,维护成本高。
三、列表
列表类型是用来储存多个有序的字符串,列表中的每个字符串成为元素(element),一个列表最多可以储存2的32次方-1个元素,在redis中,可以队列表两端插入(pubsh)和弹出(pop),还可以获取指定范围的元素列表、获取指定索引下表的元素等,列表是一种比较灵活的数据结构,它可以充当栈和队列的角色,在实际开发中有很多应用场景。
优点:
列表的元素是有序的,这就意味着可以通过索引下标获取某个或某个范围内的元素列表。
列表内的元素是可以重复的。
使用场景:
消息队列: redis的lpush+brpop命令组合即可实现阻塞队列,生产者客户端是用lupsh从列表左侧插入元素,多个消费者客户端使用brpop命令阻塞时的“抢”列表尾部的元素,多个客户端保证了消费的负载均衡和高可用性消息队列模型↑
文章列表:每个用户都有属于自己的文章列表,现在需要分页展示文章列表,此时可以考虑使用列表,列表不但有序,同时支持按照索引范围获取元素。
使用列表技巧:
lpush+lpop=Stack(栈)
lpush+rpop=Queue(队列)
lpush+ltrim=Capped Collection(有限集合)
lpush+brpop=Message Queue(消息队列)
四、集合
集合类型也是用来保存多个字符串的元素,但和列表不同的是集合中不允许有重复的元素,并且集合中的元素是无序的,不能通过索引下标获取元素,redis除了支持集合内的增删改查,同时还支持多个集合取交集、并集、差集,并合理的使用好集合类型,能在实际开发中解决很多实际问题。
使用场景:
标签(tag):集合类型比较典型的使用场景,如一个用户对娱乐、体育比较感兴趣,另一个可能对新闻感兴 趣,这些兴趣就是标签,有了这些数据就可以得到同一标签的人,以及用户的共同爱好的标签,这些数据对于用户体验以及曾强用户粘度比较重要。(用户和标签的关系维护应该放在一个事物内执行,防止部分命令失败造成数据不一致)
其他
sadd=tagging(标签)
spop/srandmember=random item(生成随机数,比如抽奖)
sadd+sinter=social Graph(社交需求)
五、有序集合
有序集合和集合有着必然的联系,他保留了集合不能有重复成员的特性,但不同得是,有序集合中的元素是可以排序的,但是它和列表的使用索引下标作为排序依据不同的是,它给每个元素设置一个分数,作为排序的依据。(有序集合中的元素不可以重复,但是csore可以重复,就和一个班里的同学学号不能重复,但考试成绩可以相同)。
- 列表、集合、有序集合三者的异同点
- 使用场景:
- 排行榜:有序集合经典使用场景。例如视频网站需要对用户上传的视频做排行榜,榜单维护可能是多方面:按照时间、按照播放量、按照获得的赞数等。
3.Redis的持久化
一、RDB持久化方案
Redis会定期保存数据快照至一个rbd文件中,并在启动时自动加载rdb文件,恢复之前保存的数据。可以在配置文件中配置Redis进行快照保存的时机。
save [seconds] [changes] #表示在seconds秒内如果发生了changes次数数据修改,则进行一次RDB快照保存
备注 :可以配置多条save指令,让redis执行多级的快照保存策略。Redis默认开启RDB快照。也可以通过SAVE或者BGSAVE命令手动触发RDB快照保存。SAVE和BGSAVE两个命令都会调用rdbSave,但是他们调用的方式不同:
SAVE 直接调用 rdbSave ,阻塞 Redis 主进程,直到保存完成为止。在主进程阻塞期间,服务器不能处理客户端的任何请求。
BGSAVE 则 fork 出一个子进程,子进程负责调用 rdbSave ,并在保存完成之后向主进程发送信号,通知保存已完成。 Redis 服务器在BGSAVE 执行期间仍然可以继续处理客户端的请求。
RDB方案的优点
对性能影响最小。如前文所述,Redis在保存RDB快照时会fork出子进程进行,几乎不影响Redis处理客户端请求的效率。
每次快照会生成一个完整的数据快照文件,所以可以辅以其他手段保存多个时间点的快照(例如把每天0点的快照备份至其他存储媒介中),作为非常可靠的灾难恢复手段。
使用RDB文件进行数据恢复比使用AOF要快很多
RDB方案的缺点
快照是定期生成的,所以在Redis crash时或多或少会丢失一部分数据
如果数据集非常大且CPU不够强(比如单核CPU),Redis在fork子进程时可能会消耗相对较长的时间,影响Redis对外提供服务的能力
#####二、AOF方案
采用AOF持久方式时,Redis会把每一个写请求都记录在一个日志文件里。在Redis重启时,会把AOF文件中记录的所有写操作顺序执行一遍,确保数据恢复到最新。
AOF rewrite
随着AOF不断地记录写操作日志,因为所有的写操作都会记录,所以必定会出现一些无用的日志。大量无用的日志会让AOF文件过大,也会让数据恢复的时间过长。不过Redis提供了AOF rewrite功能,可以重写AOF文件,只保留能够把数据恢复到最新状态的最小写操作集。
AOF rewrite可以通过BGREWRITEAOF命令触发,也可以配置Redis定期自动进行:
#Redis在每次AOF rewrite时,会记录完成rewrite后的AOF日志大小,当AOF日志大小在该基础上增长了100%后,自动进行AOF rewrite auto-aof-rewrite-percentage 100 #auto-aof-rewrite-min-size最开始的AOF文件必须要触发这个文件才触发,后面的每次重写就不会根据这个变量了。该变量仅初始化启动Redis有效。 auto-aof-rewrite-min-size 64mb
AOF的优点
最安全,在启用appendfsync为always时,任何已写入的数据都不会丢失,使用在启用appendfsync everysec也至多只会丢失1秒的数据
AOF文件在发生断电等问题时也不会损坏,即使出现了某条日志只写入了一半的情况,也可以使用redis-check-aof工具轻松修复
AOF文件易读,可修改,在进行某些错误的数据清除操作后,只要AOF文件没有rewrite,就可以把AOF文件备份出来,把错误的命令删除,然后恢复数据。
*AOF的缺点
AOF文件通常比RDB文件更大
性能消耗比RDB高
数据恢复速度比RDB慢
Redis的数据持久化工作本身就会带来延迟,需要根据数据的安全级别和性能要求制定合理的持久化策略:
AOF + fsync always的设置虽然能够绝对确保数据安全,但每个操作都会触发一次fsync,会对Redis的性能有比较明显的影响
AOF + fsync every second是比较好的折中方案,每秒fsync一次
AOF + fsync never会提供AOF持久化方案下的最优性能
使用RDB持久化通常会提供比使用AOF更高的性能,但需要注意RDB的策略配置