评估数据集CGoDial问题之半监督终身语言学习是重要的问题如何解决

简介: 评估数据集CGoDial问题之半监督终身语言学习是重要的问题如何解决

问题一:现有的自然语言领域的终身学习方法主要关注哪种学习环境?

现有的自然语言领域的终身学习方法主要关注哪种学习环境?


参考回答:

现有的自然语言领域的终身学习方法主要关注有监督的学习环境。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655778


问题二:为什么半监督终身语言学习是重要的?

为什么半监督终身语言学习是重要的?


参考回答:

在现实世界的场景中,有标数据通常是昂贵且耗时的,而无标数据数量众多且容易收集,并携带着丰富的语义信息。因此,半监督终身语言学习能够利用这些无标数据来提升模型的性能,具有重要的实际应用价值。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655779


问题三:Semi-Supervised Lifelong Language Learning 中提出了什么设定来应对有标数据稀缺的问题?

Semi-Supervised Lifelong Language Learning 中提出了什么设定来应对有标数据稀缺的问题?


参考回答:

Semi-Supervised Lifelong Language Learning 提出了一种新的设定,即半监督终身语言学习,其中每个顺序到达的语言任务都带有少量的标记数据和大量的无标数据。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655780


问题四:如何缓解灾难性遗忘的问题?

如何缓解灾难性遗忘的问题?


参考回答:

为了缓解灾难性遗忘的问题,Semi-Supervised Lifelong Language Learning 为每个任务分配特定的参数,以避免模型学习新任务时对旧任务所学过的参数造成干扰。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655781


问题五:Semi-Supervised Lifelong Language Learning 中提到的两个挑战是什么?

Semi-Supervised Lifelong Language Learning 中提到的两个挑战是什么?


参考回答:

Semi-Supervised Lifelong Language Learning 中提到的两个挑战是:(1) 如何充分利用无标数据来提升每个到来的语言任务?(2) 如何利用无标数据来鼓励知识迁移到以前学习过的任务?


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655782

相关文章
|
8月前
|
机器学习/深度学习 算法
大模型开发:解释随机森林算法以及它是如何做出决策的。
随机森林是集成学习方法,利用多棵决策树提升性能。通过随机抽样和特征选择创建弱分类器,减少模型相关性。每个决策树基于子数据集和特征子集构建,预测时集成所有决策树结果,分类问题采用投票,回归问题取平均值。这种方法降低过拟合风险,提高准确性和稳定性,对噪声和异常值容忍度高,广泛应用。
112 0
|
3月前
|
自然语言处理
杨笛一团队最新百页论文:首次统计学上证明,LLM生成的idea新颖性优于人类
【10月更文挑战第12天】斯坦福大学杨笛一团队发布百页论文,首次通过统计学方法证明大型语言模型(LLMs)在生成研究想法的新颖性上优于人类专家。研究招募100多名NLP专家进行盲评,结果显示LLM在新颖性方面显著胜出,但在可行性上稍逊。研究揭示了LLM在科研创新中的潜力与局限。
67 2
|
5月前
评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决
评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决
|
8月前
|
缓存 人工智能 数据可视化
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
让大模型不再巨无霸,这是一份最新的大模型参数高效微调综述
【5月更文挑战第12天】最新综述探讨了大模型参数高效微调,旨在减少计算成本、增强泛化能力和灵活性。方法包括Additive、Selective、Reparameterized和Hybrid PEFT,已应用于NLP、CV和多模态学习。尽管取得进展,仍需解决泛化、效率和可解释性问题。未来研究将关注多任务学习、强化学习和神经架构搜索。论文链接:https://arxiv.org/pdf/2403.14608.pdf
412 2
|
计算机视觉
SplitMask:大规模数据集是自我监督预训练的必要条件吗?
自监督预训练需要大规模数据集吗?这是2021年发布的一篇论文,它在自监督预训练场景中使用小数据集,如Stanford Cars, Sketch或COCO,它们比ImageNet小几个数量级。并提出了一种类似于BEiT的去噪自编码器的变体SplitMask,它对预训练数据的类型和大小具有更强的鲁棒性。
84 0
|
8月前
|
人工智能 弹性计算 自然语言处理
人类标注的时代已经结束?DeepMind 开源 SAFE 根治大模型幻觉问题
Google DeepMind和斯坦福大学的研究人员发布了《衡量大型语言模型长篇事实性》论文,提出了新数据集LongFact(含2,280个问题)和评估方法SAFE,用于检查AI模型在生成长文时的事实准确性、连贯性和详尽性。
|
8月前
大模型开发:描述一个你遇到过的具有挑战性的数据集问题以及你是如何解决它的。
在大模型开发中,面对不平衡数据集(某些类别样本远超其他类别)的问题,可能导致模型偏向多数类。在二分类问题中,正样本远少于负样本,影响模型学习和性能。为解决此问题,采用了数据重采样(过采样、欠采样)、SMOTE技术合成新样本、使用加权交叉熵损失函数、集成学习(Bagging、Boosting)以及模型调整(复杂度控制、早停法、正则化)。这些策略有效提升了模型性能,尤其是对少数类的预测,强调了针对数据集问题灵活运用多种方法的重要性。
85 0
|
8月前
|
人工智能 Python
论文推荐:大型语言模型能自我解释吗?
这篇论文的研究主要贡献是对LLM生成解释的优缺点进行了调查。详细介绍了两种方法,一种是做出预测,然后解释它,另一种是产生解释,然后用它来做出预测。
86 2
|
8月前
|
自然语言处理 安全 网络安全
22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】
22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】
220 0