《哇塞!LoRA 竟如魔法般实现大模型 LLM 微调,带你开启自然语言处理的奇幻冒险之旅!》

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 【8月更文挑战第21天】大语言模型革新了自然语言处理领域,但直接应用往往效果欠佳。LoRA(Low-Rank Adaptation)应运而生,通过低秩矩阵分解减少微调参数量,有效降低成本并避免过拟合。LoRA在每层加入可训练低秩矩阵,捕获特定任务信息而不大幅改动原模型。示例代码展示如何使用LoRA对预训练模型进行文本分类任务的微调,体现其高效灵活的特点。随着大模型的发展,LoRA将在NLP领域扮演关键角色。

如今,大语言模型如雨后春笋般涌现,为自然语言处理领域带来了前所未有的变革。然而,直接使用这些大规模预训练模型在特定任务上可能并不总是能达到最佳效果。这时,LoRA(Low-Rank Adaptation)技术就成为了实现大模型微调的有力工具。

LoRA 的核心思想是通过低秩矩阵分解来减少模型微调所需的参数数量。在传统的全模型微调中,需要调整大量的参数,这不仅计算成本高,而且容易导致过拟合。而 LoRA 则通过将模型参数的更新矩阵分解为两个低秩矩阵的乘积,从而大大降低了参数数量和计算成本。

那么,LoRA 是如何具体实现大模型微调的呢?首先,我们需要选择一个预训练的大语言模型作为基础模型。这个模型通常已经在大规模的文本数据上进行了训练,具有强大的语言理解和生成能力。然后,我们可以使用特定的任务数据对模型进行微调。

在微调过程中,LoRA 会在模型的每一层中插入一个可训练的低秩矩阵。这个矩阵的作用是捕捉特定任务的信息,而不会对模型的整体结构产生太大的影响。通过调整这个低秩矩阵的参数,我们可以使模型更好地适应特定任务的需求。

为了更好地理解 LoRA 的工作原理,我们可以看一个简单的示例代码。假设我们有一个预训练的语言模型,我们想要使用 LoRA 对其进行微调以进行文本分类任务。

import torch
import torch.nn as nn

# 假设这是一个预训练的语言模型
class PretrainedModel(nn.Module):
    def __init__(self):
        super(PretrainedModel, self).__init__()
        self.embedding = nn.Embedding(10000, 512)
        self.layers = nn.Sequential(
            nn.Linear(512, 1024),
            nn.ReLU(),
            nn.Linear(1024, 1024),
            nn.ReLU(),
            nn.Linear(1024, 2)  # 假设是二分类任务
        )

    def forward(self, x):
        x = self.embedding(x)
        return self.layers(x)

# 使用 LoRA 进行微调
class LoRAFinetunedModel(nn.Module):
    def __init__(self, pretrained_model):
        super(LoRAFinetunedModel, self).__init__()
        self.pretrained_model = pretrained_model
        # 在每一层插入低秩矩阵
        for layer in self.pretrained_model.layers:
            if isinstance(layer, nn.Linear):
                in_features = layer.in_features
                out_features = layer.out_features
                rank = min(in_features, out_features) // 4
                self.lora_A = nn.Parameter(torch.randn(in_features, rank))
                self.lora_B = nn.Parameter(torch.randn(rank, out_features))

    def forward(self, x):
        x = self.pretrained_model.embedding(x)
        for layer in self.pretrained_model.layers:
            if isinstance(layer, nn.Linear):
                x = layer(x) + torch.matmul(torch.matmul(x, self.lora_A), self.lora_B)
            else:
                x = layer(x)
        return x

通过这个示例代码,我们可以看到如何在预训练模型的基础上使用 LoRA 进行微调。在实际应用中,我们可以根据具体的任务和数据进行更加复杂的调整和优化。

总的来说,LoRA 为大模型的微调提供了一种高效、灵活的方法。它不仅可以降低计算成本,减少过拟合的风险,还可以使我们更好地利用预训练模型的强大能力。随着大语言模型的不断发展,LoRA 技术无疑将在自然语言处理领域发挥越来越重要的作用。让我们一起深入探索 LoRA 的奥秘,为构建更加智能的自然语言处理系统贡献自己的力量。

相关文章
|
人工智能 算法 PyTorch
AI 全自动玩斗地主,靠谱吗?Douzero算法教程
你觉得,AI 全自动玩斗地主,胜率能有多高? 真就有100%胜率,实现欢乐豆自由? 我让这个 AI 自己玩了一小时,结果出乎意料。
3198 0
AI 全自动玩斗地主,靠谱吗?Douzero算法教程
|
24天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
61 6
|
1月前
|
机器学习/深度学习 自然语言处理
【绝技揭秘】模型微调与RAG神技合璧——看深度学习高手如何玩转数据,缔造预测传奇!
【10月更文挑战第5天】随着深度学习的发展,预训练模型因泛化能力和高效训练而备受关注。直接应用预训练模型常难达最佳效果,需进行微调以适应特定任务。本文介绍模型微调方法,并通过Hugging Face的Transformers库演示BERT微调过程。同时,文章探讨了检索增强生成(RAG)技术,该技术结合检索和生成模型,在开放域问答中表现出色。通过实际案例展示了RAG的工作原理及优势,提供了微调和RAG应用的深入理解。
42 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
揭秘深度学习的幕后英雄:如何用智慧和策略战胜训练中的怪兽!
【8月更文挑战第16天】深度学习之路坎坷,如攀险峰,每一步都考验耐心与智慧。超参数调试、数据质量、计算资源、过拟合及收敛难题是常遇挑战。通过网格搜索找最优、数据增强平衡样本、混合精度与梯度累积节省资源、正则化及Dropout防过拟合、以及使用高级优化器助收敛,这些问题得以缓解。每克服一个难关,都是向成功迈进一大步,同时也深化了对深度学习的理解与掌握。
42 4
|
3月前
|
人工智能 自然语言处理 Python
🔍显微镜下的AI魔法:深入剖析生成式模型提示词工程,细节决定成败🔍
【8月更文挑战第1天】在人工智能领域,生成式模型作为连接现实与想象的桥梁展现出独特创造力。提示词工程在此扮演关键角色,通过精细调整引发内容生成的重大变化。以创意广告生成为例:初始宽泛提示词难以激发独特文案,经深度剖析与微调后,加入情感元素的提示词能更好引导模型创造共鸣内容。示例代码模拟此过程,展示优化提示词的重要性,强调细节在生成式AI中的决定性作用。
64 8
|
3月前
|
人工智能 自然语言处理
💡脑洞大开!生成式大模型提示词工程,解锁AI创作新维度的钥匙🗝️🌟
【8月更文挑战第1天】在今日科技与创意交织的世界里,生成式大模型如GPT系列、Stable Diffusion等,宛如通往未知世界的神秘大门。提示词工程则是开启这扇大门的钥匙,引领我们步入AI创作的新维度。通过巧妙设计提示词,可以引导AI探索传统手段难以触及的领域。例如,为了创作一幅“梦境与现实交织的城市”,基础提示词可能不足以激发AI的创造力。而优化后的提示词通过增加细节描述,不仅能提供更丰富的素材,还能激发AI探索更复杂主题的能力。在这个时代,提示词工程为我们打开了AI创作的新大门,让我们能够携手AI创造超越想象的作品,共同书写创意传奇。
77 7
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
"揭秘AI绘画魔法:一键生成梦幻图像,稳定扩散模型带你开启视觉奇迹之旅!"
【8月更文挑战第21天】稳定扩散(Stable Diffusion)是基于深度学习的模型,能根据文本生成高质量图像,在AI领域备受瞩目,革新了创意产业。本文介绍稳定扩散模型原理及使用步骤:环境搭建需Python与PyTorch;获取并加载预训练模型;定义文本描述后编码成向量输入模型生成图像。此外,还可调整参数定制图像风格,或使用特定数据集进行微调。掌握这项技术将极大提升创意表现力。
54 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
🌈创意无界,AI有术!生成式大模型提示词设计,让你的想象力飞得更高更远🌈
【8月更文挑战第1天】在今日科技浪潮中,生成式AI大模型如GPT系列、DALL-E等凭借深度学习技术,引领创意革命。提示词作为桥梁连接人类创意与AI技术,开启创意无限可能。优秀提示词需兼具技术理解与艺术想象,既具体又富想象空间。例如,创作“未来城市”画作时,从基础提示词“未来城市,高楼大厦,霓虹灯光”优化至“未来城市夜景,悬浮式建筑,流线型设计,色彩斑斓的霓虹灯光交织成梦幻般的网络,星空下的飞行器穿梭其间”,增加了细节与氛围描述,激发AI创作更独特作品。提示词设计让我们与AI共创奇迹,探索只存于梦中的世界,在创意新时代中飞得更高更远。
75 0
|
6月前
|
人工智能 搜索推荐
杨笛一新作:社恐有救了,AI大模型一对一陪聊,帮i人变成e人
【4月更文挑战第24天】杨笛一团队研发的AI大模型,以“AI伙伴”和“AI导师”框架帮助社恐人群提升社交技能。通过模拟真实场景和个性化反馈,该方法降低训练门槛,增强学习者自信。但也有挑战,如保持AI模拟的真实性,防止反馈偏见,并避免过度依赖。研究强调,AI应作为辅助工具而非替代。[论文链接](https://arxiv.org/pdf/2404.04204.pdf)
73 1
|
6月前
|
数据采集 人工智能 JSON
跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)
跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)【2月更文挑战第1天】
 跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)
下一篇
无影云桌面