异步&线程池 CompletableFuture 异步编排 实战应用 【终结篇】

简介: 这篇文章通过一个电商商品详情页的实战案例,展示了如何使用`CompletableFuture`进行异步编排,以解决在不同数据库表中查询商品信息的问题,并提供了详细的代码实现和遇到问题(如图片未显示)的解决方案。

前言

在查询某个商品的信息时,商品的信息可能保存在不同的数据库中,不同的表中。而且某些查询的信息可能存在另外一个查询返回的结果中。这个时候使用异步编排可以很好的解决这个问题

1、实现效果

在商品列表页面,点击商品信息,进行页面跳转

在这里插入图片描述


具体某一个商品的详情信息。可以根据地址栏的状态判断是否查询商品ID

在这里插入图片描述
在这里插入图片描述

2、核心代码

    @Override
    public SkuItemVo item(Long skuId) throws ExecutionException, InterruptedException {

        SkuItemVo skuItemVo = new SkuItemVo();

        CompletableFuture<SkuInfoEntity> infoFuture = CompletableFuture.supplyAsync(() -> {
            //1、sku基本信息的获取  pms_sku_info
            SkuInfoEntity info = this.getById(skuId);
            skuItemVo.setInfo(info);
            return info;
        }, executor);

        //2、sku的图片信息    pms_sku_images
        CompletableFuture<Void> imageFuture = CompletableFuture.runAsync(() -> {
            List<SkuImagesEntity> imagesEntities = skuImagesService.getImagesBySkuId(skuId);
            skuItemVo.setImages(imagesEntities);
        }, executor);

        CompletableFuture<Void> saleAttrFuture = infoFuture.thenAcceptAsync((res) -> {
            //3、获取spu的销售属性组合
            List<SkuItemSaleAttrVo> saleAttrVos = skuSaleAttrValueService.getSaleAttrBySpuId(res.getSpuId());
            skuItemVo.setSaleAttr(saleAttrVos);
        }, executor);

        CompletableFuture<Void> descFuture = infoFuture.thenAcceptAsync((res) -> {
            //4、获取spu的介绍    pms_spu_info_desc
            SpuInfoDescEntity spuInfoDescEntity = spuInfoDescService.getById(res.getSpuId());
            skuItemVo.setDesc(spuInfoDescEntity);
        }, executor);

        CompletableFuture<Void> baseAttrFuture = infoFuture.thenAcceptAsync((res) -> {
            //5、获取spu的规格参数信息
            List<SpuItemAttrGroupVo> attrGroupVos = attrGroupService.getAttrGroupWithAttrsBySpuId(res.getSpuId(), res.getCatalogId());
            skuItemVo.setGroupAttrs(attrGroupVos);
        }, executor);

        //等到所有任务都完成
        CompletableFuture.allOf(infoFuture,saleAttrFuture,descFuture,baseAttrFuture,imageFuture).get();

        return skuItemVo;
    }

3、遇到的问题

  • 1、页面跳转后的图片没有显示,经过排查,是在后台管理商品上架的时候,商品的默认图片没有选择。
相关文章
|
3月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
5月前
|
设计模式 运维 监控
并发设计模式实战系列(4):线程池
需要建立持续的性能剖析(Profiling)和调优机制。通过以上十二个维度的系统化扩展,构建了一个从。设置合理队列容量/拒绝策略。动态扩容/优化任务处理速度。检查线程栈定位热点代码。调整最大用户进程数限制。CPU占用率100%
361 0
|
3月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
6月前
|
Java
线程池是什么?线程池在实际工作中的应用
总的来说,线程池是一种有效的多线程处理方式,它可以提高系统的性能和稳定性。在实际工作中,我们需要根据任务的特性和系统的硬件能力来合理设置线程池的大小,以达到最佳的效果。
167 18
|
7月前
|
数据采集 存储 安全
Python爬虫实战:利用短效代理IP爬取京东母婴纸尿裤数据,多线程池并行处理方案详解
本文分享了一套结合青果网络短效代理IP和多线程池技术的电商数据爬取方案,针对京东母婴纸尿裤类目商品信息进行高效采集。通过动态代理IP规避访问限制,利用多线程提升抓取效率,同时确保数据采集的安全性和合法性。方案详细介绍了爬虫开发步骤、网页结构分析及代码实现,适用于大规模电商数据采集场景。
|
8月前
|
缓存 安全 Java
面试中的难题:线程异步执行后如何共享数据?
本文通过一个面试故事,详细讲解了Java中线程内部开启异步操作后如何安全地共享数据。介绍了异步操作的基本概念及常见实现方式(如CompletableFuture、ExecutorService),并重点探讨了volatile关键字、CountDownLatch和CompletableFuture等工具在线程间数据共享中的应用,帮助读者理解线程安全和内存可见性问题。通过这些方法,可以有效解决多线程环境下的数据共享挑战,提升编程效率和代码健壮性。
272 6
|
9月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
351 17
|
10月前
|
并行计算 算法 安全
面试必问的多线程优化技巧与实战
多线程编程是现代软件开发中不可或缺的一部分,特别是在处理高并发场景和优化程序性能时。作为Java开发者,掌握多线程优化技巧不仅能够提升程序的执行效率,还能在面试中脱颖而出。本文将从多线程基础、线程与进程的区别、多线程的优势出发,深入探讨如何避免死锁与竞态条件、线程间的通信机制、线程池的使用优势、线程优化算法与数据结构的选择,以及硬件加速技术。通过多个Java示例,我们将揭示这些技术的底层原理与实现方法。
525 3
|
11月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
787 6
|
10月前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
212 2

热门文章

最新文章