生成式AI如何改变供应链和采购角色

简介: 生成式AI如何改变供应链和采购角色

本文来源:企业网D1net


供应链和采购领导者们怀着强烈的兴奋和好奇之心迎接ChatGPT和其他生成式人工智能(AI)机器人(如Bard和Claude)的推出,然而,其在隐私、算法偏见甚至业务连续性方面存在重大的风险。在采用生成式AI时,领导团队需要考虑的一些风险领域,以及针对采购团队的一些常识性指导方针,以确保AI在道德、准确和安全的情况下运行。


事实上,生成式AI可能很快就会在整个企业的销售、营销、采购和供应链中大力支持人类决策。想想看,IBM方面已经宣布,将暂停招聘其首席执行官认为AI可以填补的7800个当前和未来的职位。然而,尽管生成式AI存在巨大的潜力领域,但其在隐私、算法偏见甚至业务连续性方面也存在同样重大的风险。


我一直在与其他领导人讨论这些问题,特别是因为它们涉及管理供应商合规使用AI的安全和道德政策。根据这些对话,以下是领导团队考虑的一些风险领域,以及针对采购团队的一些常识性指导方针,以确保AI在道德、准确和安全的情况下运行。


风险


虽然与AI相关的风险数量可能还不完全清楚,但以下是一些已经浮出水面并亟需解决的问题:


1. 欺诈和AI鱼叉式网络钓鱼


安全研究人员认为,ChatGPT正在引发一场骗局的“浪潮”。任何针对供应商(即使是很小的供应商)的骗局都可以用来损害其客户的采购团队。这一点可以参见2021年涉及SolarWinds和其他公司的攻击,以了解受损的供应商如何影响下游的其他公司。


另一方面,供应商可能会担心AI在采购过程中选择获胜供应商的准确性或公平性——客户或黑客可能会操纵AI系统,使其偏袒某些供应商,而非其他供应商,这意味着可能会失去一份利润丰厚的合同。


2. 盗窃知识产权


除非使用得当,否则输入ChatGPT或其他生成式AI工具的数据可能会传播给使用该服务的其他用户或公司,从而暴露敏感的IP和“商业机密”。这可能会导致严重的法律后果——特别是考虑到欧盟的《通用数据保护条例》(GDPR)等法律——并可能损害公司的声誉。作为回应,三星等一些公司已经禁止或暂停员工使用生成式AI技术,同时调查潜在风险。


3. 算法偏见


许多新的AI系统为供应商提供算法推荐。不幸的是,AI是根据历史数据和过去的决策进行训练的,其中可能包括对边缘化供应商的(无意识的)偏见。如果数据中存在的偏见没有得到妥善解决,AI可能会延续甚至加剧这些偏见,导致不公平的结果和潜在的法律责任。


目前,这些偏见正在影响使用AI进行招聘决策的公正性。为此,纽约刚刚通过了一项法律,要求公司对其自动招聘工具中的算法偏见承担法律责任。


4. 供应中断


在与供应链领导者的对话中,一些人担心AI可能会检测到或先发制人地对某种特定商品进行挤兑/抢购,并在抢购之前触发一个自动购买周期,从而引发挤兑。很容易想象,随着AI与监控市场并为重复交易执行购买周期的自主系统更加融合,试图在价格飙升之前“战胜市场”触发供应短缺的风险可能会无意中造成供应中断。


对于食品、燃料和药品等类别,采购和供应管理团队可能会感到痛苦,更不用说我们所服务的客户和社区了。AI管理的库存决策也可能导致意想不到的库存水平——导致库存减少、缺货、物流成本增加、收入损失和客户信心下降。


常识性指南


考虑到这些威胁,以及AI的发展速度,立即围绕这项技术的使用制定一项常识性政策是有意义的。


在工作场所之外建立负责任的使用方式


不要假设所有员工都是“AI禁欲者”。提供关于提示(prompt)中应该和不应该包含哪些信息的指导,对于围绕负责任的使用展开全面讨论至关重要。用户应该接受培训,以有效地使用AI工具并解释其输出,并保持对AI局限性和潜在风险的认知。


与供应商间设立界限


无论您的团队成员和供应商是否知道,事实是,放入ChatGPT的任何信息都可能被竞争对手和其他第三方访问。IT团队已经在竞相建立规则,但他们往往只关注内部。


作为采购和供应链团队,我们的工作是将这些期望传达给我们的供应商合作伙伴。至少,提醒供应商始终实施数据匿名化和加密技术,以保护敏感信息。


组建专业团队


对许多人来说,创造有效的“提示”是一项关键的新技能,所以可以考虑培训团队如何创造提示,甚至聘请“提示工程师”(prompt engineer)来优化结果。


您可能还要考虑执行程序来检测和减轻AI数据和输出中的偏见。这可能涉及偏见审计、公平指标和多样化的训练数据集。


讨论自触发(self-triggering)供应中断


哪些商品类别可能容易受到“恐慌性购买”的影响?其他市场参与者是如何应对这一挑战的?


这些都是战略关注的主题,无论AI是被您的公司还是被市场上的其他买家/卖家使用,这些问题都将至关重要。作为一种预防措施,建议现在就开始与您的团队进行这些类型的对话。


防护机制的未来演变


随着技术的进步和业务实践的改变,围绕AI的风险和法律限制将继续演变。考虑一下未来可能需要对AI功能进行哪些增强,以实现更高级的功能,如预测分析、更多语言的自然语言处理、偏见审计和高级欺诈检测。


现在有很多关于AI的炒作,对许多采购和供应链领域的人来说,这并不是什么新鲜事。然而,这些模型只会变得越来越好,而且改进的速度从未如此之快。如果我们在这项技术加速之前没有进行内部讨论,形成明确的界限和具体的意图,我们可能会被AI本身产生的想法和建议所困。



版权声明:本文为企业网D1Net编译,转载需在文章开头注明出处为:企业网D1Net,如果不注明出处,企业网D1Net将保留追究其法律责任的权利。



相关文章
|
1月前
|
人工智能 JavaScript 前端开发
多角色AI代理的一次尝试- AI代码助手
本文介绍了一个多角色AI代理系统,用于自动化代码开发过程。系统包括用户接口、需求分析、代码结构设计、代码生成、代码审查和代码执行等角色,通过协调工作实现从需求到代码生成与测试的全流程自动化。使用了qwen2.5 7b模型,展示了AI在软件开发中的潜力。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
DiffSensei 是一个由北京大学、上海AI实验室及南洋理工大学共同推出的AI漫画生成框架,能够生成可控的黑白漫画面板。该框架整合了基于扩散的图像生成器和多模态大型语言模型(MLLM),支持多角色控制和精确布局控制,适用于漫画创作、个性化内容生成等多个领域。
78 18
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
|
1月前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
2月前
|
人工智能 缓存 安全
什么是AI网关?AI网关在企业系统中承担什么角色?
AI大模型的快速发展正推动各行业增长,预计未来十年年均增长率达37.3%,2027年前全球企业在AI领域的投资将达8000亿美元。这促使企业进行战略转型,调整AI应用构建与保护方式。为应对AI创新需求,AI网关概念应运而生,它帮助企业随时随地控制和管理应用流量,提供更高的安全性。AI网关不仅支持多AI模型集成,还提供统一端点、应用程序配置与部署、安全与访问管理等核心功能。面对未来挑战,AI网关需支持模型故障转移、语义缓存等功能,确保AI应用的可靠性和效率。开源项目APIPark.COM为企业提供了一站式AI网关解决方案,简化大型语言模型的调用过程,保障企业数据安全。
130 1
|
2月前
|
传感器 机器学习/深度学习 数据采集
AI在环保中的角色:污染监测与防治
【10月更文挑战第6天】AI在环保领域的应用,不仅提升了污染监测的精准度和防治效率,还推动了环保技术的创新和升级。作为未来环保事业的重要力量,AI正以其独特的优势,为构建更加绿色、可持续的生态环境贡献着智慧与力量。我们有理由相信,在AI的助力下,我们的地球将变得更加美好。
|
3月前
|
机器学习/深度学习 人工智能 监控
CEO和CIO如何在企业中引领AI革命 扮演战略领航者的角色
CEO和CIO如何在企业中引领AI革命 扮演战略领航者的角色
|
3月前
|
人工智能 运维 监控
智能化运维:AI在IT管理中的角色与挑战
随着科技的不断进步,人工智能(AI)已经渗透到我们生活的方方面面,其中包括IT运维领域。本文将探讨AI如何改变传统运维模式,提高效率和准确性,并分析在实施智能化运维时可能遇到的挑战。
|
4月前
|
机器学习/深度学习 人工智能 编解码
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在艺术创作中的角色:技术引领创新的艺术新篇章
【8月更文挑战第11天】AI在艺术创作中的角色正逐步从辅助工具转变为创新推动者。通过深度学习、自然语言处理、虚拟现实等先进技术,AI为艺术创作带来了无限可能性和创新空间。未来,随着技术的不断进步和应用的深入拓展,AI与艺术的交融将为我们呈现一个更加丰富多彩、充满活力的创意世界。让我们共同期待AI在艺术创作中的更多精彩表现!
|
4月前
|
机器学习/深度学习 人工智能 算法
AI与创造力的碰撞:探索机器学习在艺术创作中的角色
【8月更文挑战第9天】当科技遇见艺术,会擦出怎样的火花?本文将带您一探究竟,深入了解人工智能尤其是机器学习如何在现代和当代艺术创作中扮演着日益重要的角色。我们将通过具体实例探讨AI如何助力艺术家突破创意限制,以及这一技术趋势对艺术领域未来的可能影响。