深入解析Memcached:内部机制、存储结构及在大数据中的应用

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 深入解析Memcached:内部机制、存储结构及在大数据中的应用

Memcached是一种高性能、分布式内存缓存系统,被广泛应用于减少数据库负载、提升应用响应速度。

一、Memcached的内部机制
  1. 基本概念 Memcached的核心思想是通过在内存中存储键值对(key-value pairs)来快速响应数据读取请求。其设计目标是简单、快速和可扩展。
  2. 数据存储与管理
  • Slab Allocator: 为了避免内存碎片化,Memcached使用了一种称为Slab Allocator的内存管理机制。内存被划分为多个Slab,每个Slab由大小相同的Chunk组成。这样,在内存分配和释放时,可以有效减少碎片。
  • LRU(Least Recently Used)淘汰算法: 当缓存空间不足时,Memcached使用LRU算法淘汰最近最少使用的数据,以腾出空间存储新数据。
  1. 分布式架构 Memcached通过一致性哈希(Consistent Hashing)将数据分布到多个服务器节点上,避免了单点故障,并提高了系统的可扩展性。
  2. 通信协议 Memcached支持两种协议:文本协议和二进制协议。文本协议易于调试,而二进制协议效率更高。
二、Memcached的存储结构

Memcached的存储结构主要由以下几部分组成:

  1. Slab Class 每个Slab Class代表一组相同大小的Slab,这些Slab又包含多个大小相等的Chunk。不同的Slab Class用于存储不同大小的数据,以适应各种数据存储需求。
  2. Chunk Chunk是实际存储数据的最小单元。每个Chunk存储一个键值对,包括键、值及其元数据(如过期时间、标志等)。
  3. Hash Table Memcached使用哈希表来管理键值对的存取。哈希表中的每个桶指向一个哈希项链表,链表中的每个节点包含一个键值对。通过哈希表的快速查找,可以高效地定位存储的数据。
三、与其他缓存系统的对比
  1. Memcached vs. Redis
  • 数据结构: Redis支持丰富的数据结构(如字符串、列表、集合、哈希等),而Memcached仅支持简单的键值对。
  • 持久化: Redis支持数据持久化,可以将内存中的数据保存到磁盘,而Memcached不支持持久化,重启后数据丢失。
  • 分布式: Memcached原生支持分布式缓存,而Redis通过Redis Cluster实现分布式。
  • 内存管理: Memcached通过Slab Allocator管理内存,减少碎片化;Redis采用分配器(如jemalloc)进行内存管理。

Memcached vs. Ehcache

  • 语言支持: Memcached主要用于分布式缓存,支持多种编程语言(如Java、Python、PHP等);Ehcache是Java语言的缓存库,集成更紧密。
  • 特性: Ehcache提供了更多高级特性,如缓存层次结构(堆内存、堆外内存、磁盘缓存)和事务支持,而Memcached功能相对简单。
  • 性能: Memcached在分布式缓存中的性能更为优越,而Ehcache更适合于单机或集群环境下的应用缓存。

Memcached vs. Apache Ignite

  • 数据处理能力: Apache Ignite不仅提供内存缓存,还支持分布式计算和数据持久化,适用于大数据处理和分析。而Memcached主要用于内存缓存,功能相对单一。
  • 一致性和持久性: Apache Ignite支持ACID事务和数据持久化,可以保证数据的一致性和可靠性。Memcached则不支持事务和持久化。
  • 扩展性: 两者都支持分布式架构,但Apache Ignite在大规模数据处理和计算方面表现更优越。
四、Memcached在大数据中的应用

在大数据应用场景中,Memcached发挥了以下重要作用:

  1. 缓存查询结果 大数据系统通常需要处理大量查询操作。通过将查询结果缓存到Memcached中,可以减少对底层数据存储系统(如Hadoop、HBase)的访问频率,从而提升查询性能。
  2. 缓存计算结果 在复杂计算任务中,部分中间结果可以被重复利用。将这些中间结果缓存到Memcached中,可以避免重复计算,提升计算效率。
  3. 分布式缓存 Memcached的分布式特性使其可以在大规模集群中高效运行,提供快速数据访问,降低系统响应时间。
五、在Java Spring Boot框架中集成Memcached

下面是一个如何在Spring Boot应用中集成Memcached的示例:

  1. 添加依赖
    首先,在Spring Boot项目的pom.xml文件中添加Memcached的依赖:
<dependency>
    <groupId>com.googlecode.xmemcached</groupId>
    <artifactId>xmemcached</artifactId>
    <version>2.4.7</version>
</dependency>

配置Memcached客户端

在Spring Boot应用的配置文件application.properties中添加Memcached服务器地址:

memcached.server.address=127.0.0.1:11211

创建Memcached配置类

创建一个配置类,用于配置Memcached客户端:

import net.rubyeye.xmemcached.MemcachedClient;
import net.rubyeye.xmemcached.XMemcachedClientBuilder;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
 
@Configuration
public class MemcachedConfig {
 
    @Value("${memcached.server.address}")
    private String memcachedServerAddress;
 
    @Bean
    public MemcachedClient memcachedClient() throws Exception {
        XMemcachedClientBuilder builder = new XMemcachedClientBuilder(memcachedServerAddress);
        return builder.build();
    }
}

使用Memcached

在Spring Boot服务中使用Memcached存储和获取数据:

import net.rubyeye.xmemcached.MemcachedClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
 
@Service
public class CacheService {
 
    @Autowired
    private MemcachedClient memcachedClient;
 
    public void set(String key, Object value, int expiration) throws Exception {
        memcachedClient.set(key, expiration, value);
    }
 
    public Object get(String key) throws Exception {
        return memcachedClient.get(key);
    }
 
    public void delete(String key) throws Exception {
        memcachedClient.delete(key);
    }
}

创建一个简单的控制器演示如何使用缓存服务:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
 
@RestController
@RequestMapping("/cache")
public class CacheController {
 
    @Autowired
    private CacheService cacheService;
 
    @GetMapping("/set")
    public String setCache(@RequestParam String key, @RequestParam String value) {
        try {
            cacheService.set(key, value, 3600);
            return "Set cache successfully";
        } catch (Exception e) {
            return "Error: " + e.getMessage();
        }
    }
 
    @GetMapping("/get")
    public String getCache(@RequestParam String key) {
        try {
            return (String) cacheService.get(key);
        } catch (Exception e) {
            return "Error: " + e.getMessage();
        }
    }
 
    @GetMapping("/delete")
    public String deleteCache(@RequestParam String key) {
        try {
            cacheService.delete(key);
            return "Delete cache successfully";
        } catch (Exception e) {
            return "Error: " + e.getMessage();
        }
    }
}
六、总结

Memcached作为一种轻量级、高性能的内存缓存解决方案,具有简单易用、扩展性强等优点。其在大数据应用中的作用尤为突出,可以显著提升系统的查询和计算效率。通过与Spring Boot框架的集成,可以方便地将Memcached应用于Java项目中,为大数据处理提供高效的缓存支持。

相关文章
|
3月前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
162 3
|
2月前
|
人工智能 分布式计算 大数据
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
|
3月前
|
存储 分布式计算 大数据
数据湖——大数据存储的新思维,如何打破传统束缚?
数据湖——大数据存储的新思维,如何打破传统束缚?
151 16
|
4月前
|
人工智能 API 开发者
HarmonyOS Next~鸿蒙应用框架开发实战:Ability Kit与Accessibility Kit深度解析
本书深入解析HarmonyOS应用框架开发,聚焦Ability Kit与Accessibility Kit两大核心组件。Ability Kit通过FA/PA双引擎架构实现跨设备协同,支持分布式能力开发;Accessibility Kit提供无障碍服务构建方案,优化用户体验。内容涵盖设计理念、实践案例、调试优化及未来演进方向,助力开发者打造高效、包容的分布式应用,体现HarmonyOS生态价值。
193 27
|
4月前
|
存储 弹性计算 安全
阿里云服务器ECS通用型规格族解析:实例规格、性能基准与场景化应用指南
作为ECS产品矩阵中的核心序列,通用型规格族以均衡的计算、内存、网络和存储性能著称,覆盖从基础应用到高性能计算的广泛场景。通用型规格族属于独享型云服务器,实例采用固定CPU调度模式,实例的每个CPU绑定到一个物理CPU超线程,实例间无CPU资源争抢,实例计算性能稳定且有严格的SLA保证,在性能上会更加稳定,高负载情况下也不会出现资源争夺现象。本文将深度解析阿里云ECS通用型规格族的技术架构、实例规格特性、最新价格政策及典型应用场景,为云计算选型提供参考。
|
4月前
|
数据采集 机器学习/深度学习 存储
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
156 4
|
4月前
|
人工智能 自然语言处理 算法
DeepSeek大模型在客服系统中的应用场景解析
在数字化浪潮下,客户服务领域正经历深刻变革,AI技术成为提升服务效能与体验的关键。DeepSeek大模型凭借自然语言处理、语音交互及多模态技术,显著优化客服流程,提升用户满意度。它通过智能问答、多轮对话引导、多模态语音客服和情绪监测等功能,革新服务模式,实现高效应答与精准分析,推动人机协作,为企业和客户创造更大价值。
437 5
|
4月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
4月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
408 29
|
4月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
124 4

热门文章

最新文章

推荐镜像

更多
  • DNS