赌你一定想要!OpenDataLab首款大模型多模态标注平台Label-LLM正式开源

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Label-LLM 是一款专为大模型训练设计的多模态文本对话标注工具,支持团队协作,让标注工作变得简单高效。它不仅涵盖丰富的任务类型,如回答采集、偏好收集和内容评估等,还支持多模态数据标注,包括图像、视频和音频。Label-LLM具备预标注载入功能,能大幅提升工作效率,并提供全方位的任务管理与可视化分析,确保标注质量。快来体验这款强大的标注平台吧![部署文档](https://github.com/opendatalab/LabelLLM)

你是否曾为大模型训练数据的标注工作感到头痛?
是否在寻觅一款简单、好用、免费的开源的多模态文本对话标注工具?
是否急需一款能团队协作标注的管理平台?
别慌,超好用的标注平台Label-LLM拯救你!

大模型的训练离不开高质量的标注数据,正是这些数据的精准标注,为模型的进化与演变提供了坚实的基础。这其中,以ChatGPT为代表的大语言模型的爆火,激发了研究人员和开发者对于多轮对话标注的强烈需求。然而,数据标注的过程往往繁琐且耗时,尤其是在多轮对话和多模态数据的标注上,挑战更是层出不穷。

为了更好地满足个人及团队等对文本对话的各类标注、管理需求,OpenDataLab团队继多模态标注工具LabelU之后,全新开源了一款面向大模型训练的多模态标注平台——Label-LLM

333937358-86cf7026-c0d6-4cad-8be5-82ae541f9813.png

这款平台不仅支持多人协作轻松完成多模态数据的标注任务,还能通过智能化的工具和高效的工作流,显著提升标注质量和效率。无论是纯文本,还是图像、视频、音频等交错问答、对话标注,Label-LLM都能提供全面的支持。现在,让我们一起深入了解这个强大的工具,看看它如何在大模型训练的标注过程中,大显身手。

Label-LLM的主要功能及特色

Label-LLM是一款能够让你轻松愉快完成标注任务的利器!接下来,让我们用2分钟时间,来快速了解一下它的主要功能及特色。

01 丰富的任务类型

作为一款面向大模型训练数据标注平台,Label-LLM集成了多种常见标注工具,并支持用户进行自由灵活的个性化配置。Label-LLM支持对整段对话以及对话中的提问或回复进行标注,可适配现有大语言模型训练中绝大部分的数据标注任务需求。如:
● 回答/指令采集:根据要求扮演AI助手解答给定的问题,或向AI助手发出符合要求的指令,包括常识问答、文本分类、文本重写、开放性问答等。
● 偏好收集:根据提供的问题和评估标准,为AI生成的多条回答进行排序。
● 内容评估:基于给定的评价准则与问题,评估回答的质量、相关度或者是否包含敏感信息。
● 分类标注:支持对数据进行分类标注,为模型的分类任务提供准确的训练数据。
640.gif

02 多模态数据标注支持

Label-LLM不仅支持纯文本数据的标注任务,同时也兼容图像、视频和音频等多种数据模态,这意味着Label-LLM能够有效地满足现阶段对多模态大型模型微调数据的标注需求,能执行更为复杂的数据标注工作。
640 (1).gif

03 支持预标注载入

Label-LLM支持导入预先标注的JSONL文件以进行二次修改。这意味着用户可以先利用多种大模型进行大规模的自动标注,在后期的人工标注过程中针对预标注中不够准确的条目进行微调、修正,从而显著提升数据标注的效率和数据质量。

04 全方位可视化任务管理

Label-LLM还提供了对于标注任务全流程的监控管理。
● 标注任务进度实时把控:能够追踪任务执行全过程,实时把控任务进度与标注质量。
● 标注结果可视化分析:支持对于已标注数据进行筛选对比,并且可以进行多维度数据分析。
640 (2).gif

Label-LLM标注配置小技巧

在配置Label-LLM标注功能时,要根据任务需求来选择标注对象和打标类型。

首先要选择标注对象类型。根据标注对象的不同,标注对象类型可分为三大类:

  1. 整段对话内容:对完整的对话进行标注。

  2. 对话中的提问:仅针对对话中的提问部分进行标注。

  3. 对话中的回答:仅针对对话中的回答部分进行标注。

接下来,要选择标注的打标类型。无论标注对象是哪一种,打标都分为两大类:

  1. 选择题:包括单选题和多选题。这种题目需要提前配置好具体选项内容,标注时通过下拉菜单勾选。

  2. 文本题:允许自由填写内容,同时也支持设置默认值,方便快速标注。

在选择上述选项后,您就可以通过自由组合标注工具,灵活适配适合自身的标注场景、任务或题目了。配置好标注工具,可以进入工作台,愉快地上传数据分配标注任务了。

Label-LLM安装部署教程

另外,Label-LLM还提供了诸如预标注载入、可视化任务管理等功能,帮助大家提升标注效率,快来试试吧。

Label-LLM 部署文档:
https://github.com/opendatalab/LabelLLM/wiki/README%E2%80%90zh

更多数据处理宝藏工具,尽在 OpenDataLab GitHub仓库:
https://github.com/opendatalab

还有超好用的多模态标注工具 LabelU:
https://github.com/opendatalab/labelU

不要吝啬你的star!

目录
相关文章
|
1月前
|
人工智能 算法 开发者
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
202 10
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
|
16天前
|
机器学习/深度学习 数据采集 人工智能
通义实验室Mobile-Agent-v3开源,全平台SOTA的GUI智能体,支持手机电脑等多平台交互
近日,通义实验室MobileAgent团队正式开源全新图形界面交互基础模型 GUI-Owl,并同步推出支持多智能体协同的自动化框架 Mobile-Agent-v3。该模型基于Qwen2.5-VL打造,在手机端与电脑端共8个GUI任务榜单中全面刷新开源模型性能纪录,达成全平台SOTA。
192 2
|
9天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1182 87
|
1月前
|
数据采集 机器学习/深度学习 编解码
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
305 0
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
|
1月前
智谱发布GLM-4.5V,全球开源多模态推理新标杆,Day0推理微调实战教程到!
视觉语言大模型(VLM)已经成为智能系统的关键基石。随着真实世界的智能任务越来越复杂,VLM模型也亟需在基本的多模态感知之外,逐渐增强复杂任务中的推理能力,提升自身的准确性、全面性和智能化程度,使得复杂问题解决、长上下文理解、多模态智能体等智能任务成为可能。
374 0
|
1月前
|
编解码 算法 测试技术
MiniCPM-V4.0开源,多模态能力进化,手机可用,还有最全CookBook!
今天,面壁小钢炮新一代多模态模型 MiniCPM-V 4.0 正式开源。依靠 4B 参数,取得 在 OpenCompass、OCRBench、MathVista 等多个榜单上取得了同级 SOTA 成绩,且 实现了在手机上稳定、丝滑运行。此外,官方也正式开源了 推理部署工具 MiniCPM-V CookBook,帮助开发者面向不同需求、不同场景、不同设备,均可实现开箱即用的轻量、简易部署。
296 0
|
10天前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
354 1
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
2月前
|
弹性计算 关系型数据库 API
自建Dify平台与PAI EAS LLM大模型
本文介绍了如何使用阿里云计算巢(ECS)一键部署Dify,并在PAI EAS上搭建LLM、Embedding及重排序模型,实现知识库支持的RAG应用。内容涵盖Dify初始化、PAI模型部署、API配置及RAG知识检索设置。
自建Dify平台与PAI EAS LLM大模型
|
30天前
|
编解码 自然语言处理
通义万相开源14B数字人Wan2.2-S2V!影视级音频驱动视频生成,助力专业内容创作
今天,通义万相的视频生成模型又开源了!本次开源Wan2.2-S2V-14B,是一款音频驱动的视频生成模型,可生成影视级质感的高质量视频。
401 29
|
18天前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
375 1