用户态协议栈06-TCP三次握手

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 用户态协议栈06-TCP三次握手

最近由于准备软件工程师职称考试,然后考完之后不小心生病了,都没写过DPDK的博客了。今天开始在上次架构优化的基础上增加TCP的协议栈流程。

什么是TCP

百度百科:TCP即传输控制协议(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通讯协议。

这里最需要关注的就是基于字节流,在我们使用Linux的Posix API创建TCP的Socket时,我们通常会这样操作:

int socket = socket(AF_INET, SOCK_STREAM, 0);

其中的SOCK_STREAM参数的意思就是创建流式套接字。在写UDP的时候,只需要单纯的发送一个一个报文就可以,因为UDP是面向数据包的。TCP相对UDP来说是比较复杂的,它对每一个TCP数据流都需要一个对应的TCP控制块,控制数据流。

数据结构

TCP状态

typedef enum _LN_TCP_STATUS {
  LN_TCP_STATUS_CLOSED = 0,
  LN_TCP_STATUS_LISTEN,
  LN_TCP_STATUS_SYN_RECV,
  LN_TCP_STATUS_SYN_SEND,
  LN_TCP_STATUS_ESTABLELISTEN,
  LN_TCP_STATUS_FIN_WAIT_1,
  LN_TCP_STATUS_FIN_WAIT_2,
  LN_TCP_STATUS_CLOSEING,
  LN_TCP_STATUS_TIME_WAIT,
  LN_TCP_STATUS_CLOSE_WAIT,
  LN_TCP_STATUS_LAST_ACK,
} LN_TCP_STATUS;

定义TCP的11个状态,LN没有别的意思,就是我的名字lenn的缩写而已。

TCP控制块

struct ln_tcp_stream {
  int fd;
  uint32_t sip;
  uint32_t dip;
  uint16_t sport;
  uint16_t dport;
  uint16_t proto;
  uint8_t localmac[RTE_ETHER_ADDR_LEN];
  uint32_t snd_nxt;
  uint32_t rev_nxt;
  LN_TCP_STATUS status;
  struct rte_ring* snd_buf;
  struct rte_ring* rev_buf;
  struct ln_tcp_stream* prev;
  struct ln_tcp_stream* next;
};
  • fd:socket句柄
  • sip、dip:源ip和目的ip
  • proto:协议类型
  • localmac:本地mac地址
  • snd_nxt:seq
  • rev_nxt:ack
  • snd_buf:发送队列
  • rev_buf:接收队列
  • prev、next:链表存储所有tcp块

TCP数据流

struct ln_tcp_fragment {
  uint16_t sport;
  uint16_t dport;
  uint32_t seqnum;
  uint32_t acknum;
  uint8_t  hdrlen_off;
  uint8_t  tcp_flags;
  uint16_t windows;
  uint16_t cksum;
  uint16_t tcp_urp;
  int optlen;
  uint32_t option[TCP_OPTION_LENGTH];
  uint8_t* data;
  int length;
};

将tcp数据包的参数定义到fragment里面,包括数据和数据长度。

TCP控制块链表

struct ln_tcp_table {
  int count;
  struct ln_tcp_stream* streams;
};
struct ln_tcp_table* tcpt = NULL;
static struct ln_tcp_table* ln_tcp_instance(void) {
  if(tcpt == NULL) {
    tcpt = rte_malloc("tcpt", sizeof(struct ln_tcp_table), 0);
    if(!tcpt) {
      rte_exit(EXIT_FAILURE, "Error with malloc tcpt");
    }
    memset(tcpt, 0, sizeof(struct ln_tcp_table));
  }
  return tcpt;
}
static struct ln_tcp_stream* ln_tcp_stream_search(uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport) {
  struct ln_tcp_table* table = ln_tcp_instance();
  struct ln_tcp_stream* iter;
  
  for(iter = table->streams; iter != NULL; iter = iter->next) {
    if(iter->dip == dip && iter->sip == sip && iter->sport == sport && iter->dport == dport) {
      
      return iter;
    }
  }
  return NULL;
}
static struct ln_tcp_stream* ln_tcp_stream_create(uint32_t sip, uint32_t dip, uint32_t sport, uint32_t dport) {
  struct ln_tcp_stream* stream = rte_malloc("ln_tcp_stream", sizeof(struct ln_tcp_stream), 0);
  if(!stream) return NULL;
  stream->sip = sip;
  stream->dip = dip;
  stream->sport = sport;
  stream->dport = dport;
  stream->proto = IPPROTO_TCP;
  stream->status = LN_TCP_STATUS_LISTEN;
  uint32_t next_seed = time(NULL);
  stream->snd_nxt = rand_r(&next_seed) % TCP_MAX_SEQ;
  stream->rev_buf = rte_ring_create("tcp_rev_ring", RING_SIZE, rte_socket_id(), 0);
  stream->snd_buf = rte_ring_create("tcp_snd_ring", RING_SIZE, rte_socket_id(), 0);
  rte_memcpy(stream->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);
  struct ln_tcp_table* table = ln_tcp_instance();
  LL_ADD(stream, table->streams);
  return stream;
}

单例模式,将所有的TCP控制块存储在一个链表中,同时统计有多少个TCP控制块。根据源端口,目的端口,源IP和目的IP来搜索链表中有没有已经存在的TCP控制块;如果没有搜索到的话,创建新的TCP控制块并且插入到链表中。需要注意的是,每个TCP控制块都有自己的环形收发缓冲区用来管理自己的数据流fragment。

协议栈函数

TCP流程控制

static int ln_tcp_process(struct rte_mbuf* tcpmbuf) {
  printf("ln_tcp_process\n");
  struct rte_ipv4_hdr* iphdr = rte_pktmbuf_mtod_offset(tcpmbuf, struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));
  struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
#if 1
  uint16_t tcpcksum = tcphdr->cksum;
  tcphdr->cksum = 0;
  uint16_t cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);
  if(tcpcksum != cksum) {
    printf("cksum: %x, tcp cksum: %x\n", cksum, tcpcksum);
    return -1;
  }
#endif
  struct ln_tcp_stream* stream = ln_tcp_stream_search(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
  if(stream == NULL) {
    stream = ln_tcp_stream_create(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
    
    if(stream == NULL)
      return -2;
  }
  switch(stream->status) {
    case LN_TCP_STATUS_CLOSED:
      break;
    case LN_TCP_STATUS_LISTEN:
      printf("listen\n");
      ln_tcp_handle_listen(stream, tcphdr);
      break;
    case LN_TCP_STATUS_SYN_RECV:
      printf("recv\n");
      ln_tcp_handle_syn_recv(stream, tcphdr);
      break;
    case LN_TCP_STATUS_SYN_SEND:
      break;
    case LN_TCP_STATUS_ESTABLELISTEN:
    {
      printf("establelisten\n");
      uint8_t hdrlen = (tcphdr->data_off & 0xF0);
      //hdrlen >= 4;
      uint8_t* offload = (uint8_t*)(tcphdr + 1) + hdrlen * 4;
      printf("offload: %s\n", offload);
      break;
    }
    case LN_TCP_STATUS_FIN_WAIT_1:
      break;
    case LN_TCP_STATUS_FIN_WAIT_2:
      break;
    case LN_TCP_STATUS_CLOSEING:
      break;
    case LN_TCP_STATUS_TIME_WAIT:
      break;
    case LN_TCP_STATUS_CLOSE_WAIT:
      break;
    case LN_TCP_STATUS_LAST_ACK:
      break;
  }
  return 0;
}

这里是主要的TCP流程控制函数,这里已经完成的部分只是实现了TCP的三次握手,比较直观的说就是,点击网络助手的连接可以连接成功:

首先我们需要校验每一个TCP数据包,如果校验结果不对,那包数据就是错误的,直接返回。其实在这里,ln_tcp_handle_syn_recv不是必要的,只要进入的ESTABLELISTEN状态都是可以连接成功的。

组织TCP数据包

static int ln_encode_tcp_pkt(uint8_t* msg, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {
  printf("ln_encode_tcp_pkt\n");
  uint16_t hdr_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr);
  uint16_t total_len = fragment->length + hdr_len + fragment->optlen * sizeof(uint32_t);
  struct rte_ether_hdr* ethhdr = (struct rte_ether_hdr*)msg;
  rte_memcpy(ethhdr->s_addr.addr_bytes, smac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(ethhdr->d_addr.addr_bytes, dmac, RTE_ETHER_ADDR_LEN);
  ethhdr->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  struct rte_ipv4_hdr* iphdr = (struct rte_ipv4_hdr*)(ethhdr + 1);
  iphdr->version_ihl = 0x45;
  iphdr->time_to_live = 64;
  iphdr->src_addr = sip;
  iphdr->dst_addr = dip;
  iphdr->next_proto_id = IPPROTO_TCP;
  iphdr->fragment_offset = 0;
  iphdr->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
  iphdr->packet_id = 0;
  iphdr->type_of_service = 0;
  iphdr->hdr_checksum = 0;
  iphdr->hdr_checksum = rte_ipv4_cksum(iphdr);
  struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
  tcphdr->src_port = fragment->sport;
  tcphdr->dst_port = fragment->dport;
  tcphdr->recv_ack = htonl(fragment->acknum);
  tcphdr->sent_seq = htonl(fragment->seqnum);
  tcphdr->data_off = fragment->hdrlen_off;
  tcphdr->rx_win = fragment->windows;
  tcphdr->tcp_flags = fragment->tcp_flags;
  tcphdr->tcp_urp = fragment->tcp_urp;
  if(fragment->data != NULL) {
    uint8_t* offload = (uint8_t*)(tcphdr + 1) + fragment->optlen * sizeof(uint32_t);
    rte_memcpy(offload, fragment->data, fragment->length);
  }
  tcphdr->cksum = 0;
  tcphdr->cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);
  return 0;
}
static struct rte_mbuf* ln_send_tcp(struct rte_mempool* mbuf_pool, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {
  struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if(!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc tcp\n");
  }
  uint16_t total_len = fragment->length + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr) + fragment->optlen * sizeof(uint32_t);
  mbuf->pkt_len = total_len;
  mbuf->data_len = total_len;
  uint8_t* pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
  ln_encode_tcp_pkt(pktdata, sip, dip, smac, dmac, fragment);
  return mbuf;
}

这里不解释了,一直都是这样过来的,哪里有问题了[doge]

TCP过程转换

三次握手过程

参考这篇文章,我这里就摘录一下文字总结的部分。

三次握手是 TCP 连接的建立过程。在握手之前,主动打开连接的客户端结束 CLOSE 阶段,被动打开的服务器也结束 CLOSE 阶段,并进入 LISTEN 阶段。随后进入三次握手阶段:

  1. 首先客户端向服务器发送一个 SYN 包,并等待服务器确认,其中:
    - 标志位为 SYN,表示请求建立连接
    - 序号为 Seq = x(x 一般取随机数)
    - 随后客户端进入 SYN-SENT 阶段
  2. 服务器接收到客户端发来的 SYN 包后,对该包进行确认后结束 LISTEN 阶段,并返回一段 TCP 报文,其中:
    - 标志位为 SYN 和 ACK,表示确认客户端的报文 Seq 序号有效,服务器能正常接收客户端发送的数据,并同意创建新连接
    - 序号为 Seq = y
    - 确认号为 Ack = x + 1,表示收到客户端的序号 Seq 并将其值加 1 作为自己确认号 Ack 的值,随后服务器端进入 SYN-RECV 阶段
  3. 客户端接收到发送的 SYN + ACK 包后,明确了从客户端到服务器的数据传输是正常的,从而结束 SYN-SENT 阶段。并返回最后一段报文。其中:
    - 标志位为 ACK,表示确认收到服务器端同意连接的信号
    - 序号为 Seq = x + 1,表示收到服务器端的确认号 Ack,并将其值作为自己的序号值
    - 确认号为 Ack= y + 1,表示收到服务器端序号 seq,并将其值加 1 作为自己的确认号 Ack 的值
    - 随后客户端进入 ESTABLISHED
    当服务器端收到来自客户端确认收到服务器数据的报文后,得知从服务器到客户端的数据传输是正常的,从而结束 SYN-RECV 阶段,进入 ESTABLISHED 阶段,从而完成三次握手。
服务器LISTEN状态
static int ln_tcp_handle_listen(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {
  if(hdr->tcp_flags & RTE_TCP_SYN_FLAG) {
    if(stream->status == LN_TCP_STATUS_LISTEN) {
      struct ln_tcp_fragment* fragment = rte_malloc("tcp_fragment", sizeof(struct ln_tcp_fragment), 0);
      if(!fragment) {
        return -1;
      }
      memset(fragment, 0, sizeof(struct ln_tcp_fragment));
      
      fragment->sport = hdr->dst_port;
      fragment->dport = hdr->src_port;
      struct in_addr addr;
      addr.s_addr = stream->sip;
      printf("tcp --> src: %s:%d ", inet_ntoa(addr), ntohs(hdr->src_port));
      addr.s_addr = stream->dip;
      printf("  --> dst: %s:%d\n", inet_ntoa(addr), ntohs(hdr->dst_port));
      fragment->seqnum = stream->snd_nxt;
      printf("before get ack\n");
      fragment->acknum = ntohl(hdr->sent_seq) + 1;
      printf("before get flags\n");
      fragment->tcp_flags = (RTE_TCP_ACK_FLAG | RTE_TCP_SYN_FLAG);
      
      fragment->windows = TCP_INITIAL_WINDOW;
      fragment->hdrlen_off = 0x50;
      fragment->data = NULL;
      fragment->length = 0;
      rte_ring_mp_enqueue(stream->snd_buf, fragment);
      stream->status = LN_TCP_STATUS_SYN_RECV;
    }
  }
  return 0;
}
服务器SYN_RECV状态
static int ln_tcp_handle_syn_recv(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {
  if(hdr->tcp_flags & RTE_TCP_ACK_FLAG) {
    if(stream->status == LN_TCP_STATUS_SYN_RECV) {
      uint32_t ack = ntohl(hdr->recv_ack);
      if(ack == stream->snd_nxt + 1) {
        
      }
      stream->status = LN_TCP_STATUS_ESTABLELISTEN;
    }
  }
  return 0;
}

完整代码

#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_timer.h>
#include <rte_ring.h>
#include <stdio.h>
#include <stdlib.h>
#include <arpa/inet.h>
#include "arp.h"
#define ENABLE_SEND   1
#define ENABLE_ARP    1
#define ENABLE_ICMP   1
#define ENABLE_ARP_REPLY  1
#define ENABLE_DEBUG    1
#define ENABLE_TIMER    1
#define NUM_MBUFS (4096-1)
#define BURST_SIZE  32
#define RING_SIZE 1024
#define UDP_APP_RECV_BUFFER_SIZE  128
#define TIMER_RESOLUTION_CYCLES 120000000000ULL // 10ms * 1000 = 10s * 6
struct inout_ring {
  struct rte_ring* in;
  struct rte_ring* out;
};
static struct inout_ring* ioInst = NULL;
static struct inout_ring* inout_ring_instance(void) {
  if(ioInst == NULL) {
    ioInst = rte_malloc("inout ring", sizeof(struct inout_ring), 0);
    memset(ioInst, 0, sizeof(struct inout_ring));
  }
  return ioInst;
}
#if ENABLE_SEND
#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
static uint32_t gLocalIp = MAKE_IPV4_ADDR(172, 26, 34, 243);
static uint32_t gSrcIp; //
static uint32_t gDstIp;
static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
//static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
static uint16_t gSrcPort;
static uint16_t gDstPort;
#endif
#if ENABLE_ARP_REPLY
static uint8_t gDefaultArpMac[RTE_ETHER_ADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
#endif
int gDpdkPortId = 0;
static const struct rte_eth_conf port_conf_default = {
  .rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};
int udp_process(struct rte_mbuf* udpmbuf);
static void ng_init_port(struct rte_mempool *mbuf_pool) {
  uint16_t nb_sys_ports= rte_eth_dev_count_avail(); //
  if (nb_sys_ports == 0) {
    rte_exit(EXIT_FAILURE, "No Supported eth found\n");
  }
  struct rte_eth_dev_info dev_info;
  rte_eth_dev_info_get(gDpdkPortId, &dev_info); //
  
  const int num_rx_queues = 1;
  const int num_tx_queues = 1;
  struct rte_eth_conf port_conf = port_conf_default;
  rte_eth_dev_configure(gDpdkPortId, num_rx_queues, num_tx_queues, &port_conf);
  if (rte_eth_rx_queue_setup(gDpdkPortId, 0 , 1024, 
    rte_eth_dev_socket_id(gDpdkPortId),NULL, mbuf_pool) < 0) {
    rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");
  }
  
#if ENABLE_SEND
  struct rte_eth_txconf txq_conf = dev_info.default_txconf;
  txq_conf.offloads = port_conf.rxmode.offloads;
  if (rte_eth_tx_queue_setup(gDpdkPortId, 0 , 1024, 
    rte_eth_dev_socket_id(gDpdkPortId), &txq_conf) < 0) {
    
    rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
    
  }
#endif
  if (rte_eth_dev_start(gDpdkPortId) < 0 ) {
    rte_exit(EXIT_FAILURE, "Could not start\n");
  }
  
}
static int ng_encode_udp_pkt(uint8_t *msg, uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport, uint8_t* smac, uint8_t* dmac, unsigned char *data, uint16_t total_len) {
  // encode 
  // 1 ethhdr
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, smac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(eth->d_addr.addr_bytes, dmac, RTE_ETHER_ADDR_LEN);
  eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  
  // 2 iphdr 
  struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
  ip->version_ihl = 0x45;
  ip->type_of_service = 0;
  ip->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
  ip->packet_id = 0;
  ip->fragment_offset = 0;
  ip->time_to_live = 64; // ttl = 64
  ip->next_proto_id = IPPROTO_UDP;
  ip->src_addr = sip;
  ip->dst_addr = dip;
  
  ip->hdr_checksum = 0;
  ip->hdr_checksum = rte_ipv4_cksum(ip);
  // 3 udphdr 
  struct rte_udp_hdr *udp = (struct rte_udp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
  udp->src_port = sport;
  udp->dst_port = dport;
  uint16_t udplen = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
  udp->dgram_len = htons(udplen);
  rte_memcpy((uint8_t*)(udp+1), data, udplen);
  udp->dgram_cksum = 0;
  udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);
  struct in_addr addr;
  addr.s_addr = gSrcIp;
  printf(" --> src: %s:%d, ", inet_ntoa(addr), ntohs(gSrcPort));
  addr.s_addr = gDstIp;
  printf("dst: %s:%d\n", inet_ntoa(addr), ntohs(gDstPort));
  return 0;
}
static struct rte_mbuf * ng_send_udp(struct rte_mempool *mbuf_pool, uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport, uint8_t* smac, uint8_t* dmac, uint8_t *data, uint16_t length) {
  // mempool --> mbuf
  const unsigned total_len = length + 42;
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc udp\n");
  }
  mbuf->pkt_len = total_len;
  mbuf->data_len = total_len;
  uint8_t *pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
  ng_encode_udp_pkt(pktdata, sip, dip, sport, dport, smac, dmac, data, total_len);
  return mbuf;
}
#if ENABLE_ARP
static int ng_encode_arp_pkt(uint8_t *msg, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
  // 1 ethhdr
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  if (!strncmp((const char *)dst_mac, (const char *)gDefaultArpMac, RTE_ETHER_ADDR_LEN)) {
    uint8_t mac[RTE_ETHER_ADDR_LEN] = {0x0};
    rte_memcpy(eth->d_addr.addr_bytes, mac, RTE_ETHER_ADDR_LEN);
  } else {
    rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  }
  eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
  // 2 arp 
  struct rte_arp_hdr *arp = (struct rte_arp_hdr *)(eth + 1);
  arp->arp_hardware = htons(1);
  arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
  arp->arp_hlen = RTE_ETHER_ADDR_LEN;
  arp->arp_plen = sizeof(uint32_t);
  arp->arp_opcode = htons(opcode);
  rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy( arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  arp->arp_data.arp_sip = sip;
  arp->arp_data.arp_tip = dip;
  
  return 0;
}
static struct rte_mbuf *ng_send_arp(struct rte_mempool *mbuf_pool, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
  const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc arp\n");
  }
  mbuf->pkt_len = total_length;
  mbuf->data_len = total_length;
  uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
  ng_encode_arp_pkt(pkt_data, opcode, dst_mac, sip, dip);
  return mbuf;
}
#endif
#if ENABLE_ICMP
static uint16_t ng_checksum(uint16_t *addr, int count) {
  register long sum = 0;
  while (count > 1) {
    sum += *(unsigned short*)addr++;
    count -= 2;
  
  }
  if (count > 0) {
    sum += *(unsigned char *)addr;
  }
  while (sum >> 16) {
    sum = (sum & 0xffff) + (sum >> 16);
  }
  return ~sum;
}
static int ng_encode_icmp_pkt(uint8_t *msg, uint8_t *dst_mac,
    uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
  // 1 ether
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  // 2 ip
  struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
  ip->version_ihl = 0x45;
  ip->type_of_service = 0;
  ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
  ip->packet_id = 0;
  ip->fragment_offset = 0;
  ip->time_to_live = 64; // ttl = 64
  ip->next_proto_id = IPPROTO_ICMP;
  ip->src_addr = sip;
  ip->dst_addr = dip;
  
  ip->hdr_checksum = 0;
  ip->hdr_checksum = rte_ipv4_cksum(ip);
  // 3 icmp 
  struct rte_icmp_hdr *icmp = (struct rte_icmp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
  icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
  icmp->icmp_code = 0;
  icmp->icmp_ident = id;
  icmp->icmp_seq_nb = seqnb;
  icmp->icmp_cksum = 0;
  icmp->icmp_cksum = ng_checksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));
  return 0;
}
static struct rte_mbuf *ng_send_icmp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac,
    uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
  const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc icmp\n");
  }
  
  mbuf->pkt_len = total_length;
  mbuf->data_len = total_length;
  uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
  ng_encode_icmp_pkt(pkt_data, dst_mac, sip, dip, id, seqnb);
  return mbuf;
}
#endif
static void 
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
  char buf[RTE_ETHER_ADDR_FMT_SIZE];
  rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
  printf("%s%s", name, buf);
}
#if ENABLE_TIMER
static void
arp_request_timer_cb(__attribute__((unused)) struct rte_timer *tim,
     void *arg) {
  struct rte_mempool *mbuf_pool = (struct rte_mempool *)arg;
#if 0
  struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, ahdr->arp_data.arp_sha.addr_bytes, 
    ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
  rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
  rte_pktmbuf_free(arpbuf);
#endif
  
  int i = 0;
  for (i = 1;i <= 254;i ++) {
    uint32_t dstip = (gLocalIp & 0x00FFFFFF) | (0xFF000000 & (i << 24));
    struct in_addr addr;
    addr.s_addr = dstip;
    printf("arp ---> src: %s \n", inet_ntoa(addr));
    struct rte_mbuf *arpbuf = NULL;
    uint8_t *dstmac = ng_get_dst_macaddr(dstip);
    if (dstmac == NULL) {
      arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, gLocalIp, dstip);
    
    } else {
      arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, dstmac, gLocalIp, dstip);
    }
    rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
    rte_pktmbuf_free(arpbuf);
    
  }
  
}
#endif
static int udp_out(struct rte_mempool* mbuf_pool);
static int ln_tcp_out(struct rte_mempool* mbuf_pool);
static int ln_tcp_process(struct rte_mbuf* tcpmbuf);
static int pkt_process(void* arg) {
  struct rte_mempool* mbuf_pool = (struct rte_mempool*)arg;
  struct inout_ring* ring = inout_ring_instance();
  while(1) {
    struct rte_mbuf *mbufs[BURST_SIZE];
    unsigned num_recvd = rte_ring_mc_dequeue_burst(ring->in, (void**)mbufs, BURST_SIZE, NULL);
    unsigned i = 0;
    for (i = 0;i < num_recvd;i++) {
      struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i], struct rte_ether_hdr*);
#if ENABLE_ARP
      if (ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
        struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i], 
          struct rte_arp_hdr *, sizeof(struct rte_ether_hdr));
        
        struct in_addr addr;
        addr.s_addr = ahdr->arp_data.arp_tip;
        printf("arp ---> src: %s ", inet_ntoa(addr));
        addr.s_addr = gLocalIp;
        printf(" local: %s \n", inet_ntoa(addr));
        if (ahdr->arp_data.arp_tip == gLocalIp) {
          if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REQUEST)) {
            printf("arp --> request\n");
            struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REPLY, ahdr->arp_data.arp_sha.addr_bytes, 
              ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
            //rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
            //rte_pktmbuf_free(arpbuf);
            rte_ring_mp_enqueue_burst(ring->out, (void**)&arpbuf, 1, NULL);
          } else if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REPLY)) {
            printf("arp --> reply\n");
            struct arp_table *table = arp_table_instance();
            uint8_t *hwaddr = ng_get_dst_macaddr(ahdr->arp_data.arp_sip);
            if (hwaddr == NULL) {
              struct arp_entry *entry = rte_malloc("arp_entry",sizeof(struct arp_entry), 0);
              if (entry) {
                memset(entry, 0, sizeof(struct arp_entry));
                entry->ip = ahdr->arp_data.arp_sip;
                rte_memcpy(entry->hwaddr, ahdr->arp_data.arp_sha.addr_bytes, RTE_ETHER_ADDR_LEN);
                entry->type = 0;
                
                LL_ADD(entry, table->entries);
                table->count ++;
              }
            }
#if ENABLE_DEBUG
            struct arp_entry *iter;
            for (iter = table->entries; iter != NULL; iter = iter->next) {
          
              struct in_addr addr;
              addr.s_addr = iter->ip;
              print_ethaddr("arp table --> mac: ", (struct rte_ether_addr *)iter->hwaddr);
                
              printf(" ip: %s \n", inet_ntoa(addr));
          
            }
#endif
            rte_pktmbuf_free(mbufs[i]);
          }
        
          continue;
        } 
      }
#endif
      if (ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
        continue;
      }
      struct rte_ipv4_hdr *iphdr =  rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, 
        sizeof(struct rte_ether_hdr));
      
      if (iphdr->next_proto_id == IPPROTO_UDP) {
        udp_process(mbufs[i]);
      }
      if(iphdr->next_proto_id == IPPROTO_TCP) {
        ln_tcp_process(mbufs[i]);
      }
#if ENABLE_ICMP
      if (iphdr->next_proto_id == IPPROTO_ICMP) {
        struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);
        
        struct in_addr addr;
        addr.s_addr = iphdr->src_addr;
        printf("icmp ---> src: %s ", inet_ntoa(addr));
        
        if (icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {
          addr.s_addr = iphdr->dst_addr;
          printf(" local: %s , type : %d\n", inet_ntoa(addr), icmphdr->icmp_type);
        
          struct rte_mbuf *txbuf = ng_send_icmp(mbuf_pool, ehdr->s_addr.addr_bytes,
            iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);
          //rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
          //rte_pktmbuf_free(txbuf);
          rte_ring_mp_enqueue_burst(ring->out, (void**)&txbuf, 1, NULL);
          rte_pktmbuf_free(mbufs[i]);
        }
        
      }
#endif
      
    }
    udp_out(mbuf_pool);
    ln_tcp_out(mbuf_pool);
  }
  return 0;
}
struct localhost {
  int fd;
  uint32_t localip;
  uint8_t localmac[RTE_ETHER_ADDR_LEN];
  uint16_t localport;
  uint8_t proto;
  struct rte_ring* recv_buf;
  struct rte_ring* send_buf;
  struct localhost* prev;
  struct localhost* next;
  pthread_mutex_t mutex;
  pthread_cond_t cond;
};
struct localhost* lhost = NULL;
#define DEFAULT_FD 3
static int get_fd_frombitmap(void) {
  int fd = DEFAULT_FD;
  return fd;
}
static struct localhost* get_host_fromfd(int fd) {
  struct localhost* host = lhost;
  for(host = lhost; host != NULL; host = host->next) {
    if(host->fd == fd)
      return host;
  }
  return NULL;
};
static struct localhost* get_host_fromport(uint32_t dip, uint16_t port, uint8_t proto) {
  struct localhost* host = lhost;
  for(host = lhost; host != NULL; host = host->next) {
    if(host->localip == dip && host->localport == port && host->proto == proto)
      return host;
  }
  return NULL;
}
struct offload {
  uint32_t sip;
  uint32_t dip;
  uint16_t sport;
  uint16_t dport;
  uint8_t proto;
  uint8_t* data;
  uint16_t length;
};
int udp_process(struct rte_mbuf* udpmbuf) {
  struct rte_ipv4_hdr* ip = rte_pktmbuf_mtod_offset(udpmbuf, struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));
  struct rte_udp_hdr* udp = (struct rte_udp_hdr*)(ip + 1);
  struct localhost* host = get_host_fromport(ip->dst_addr, udp->dst_port, ip->next_proto_id);
  if(host == NULL) {
    rte_pktmbuf_free(udpmbuf);
    return -3;
  }
  struct offload* ol = rte_malloc("udp ol", sizeof(struct offload), 0);
  if(ol == NULL) {
    rte_pktmbuf_free(udpmbuf);
    return -2;
  }
  
  ol->sip = ip->src_addr;
  ol->dip = ip->dst_addr;
  ol->sport = udp->src_port;
  ol->dport = udp->dst_port;
  ol->proto = IPPROTO_UDP;
  ol->length = ntohs(udp->dgram_len);
  ol->data = rte_malloc("ol data", ol->length - sizeof(struct rte_udp_hdr), 0);
  if(ol->data == NULL) {
    rte_pktmbuf_free(udpmbuf);
    rte_free(ol);
    return -1;
  }
  rte_memcpy(ol->data, (uint8_t*)(udp + 1), ol->length - sizeof(struct rte_udp_hdr));
  rte_ring_mp_enqueue(host->recv_buf, ol);
  pthread_mutex_lock(&host->mutex);
  pthread_cond_signal(&host->cond);
  pthread_mutex_unlock(&host->mutex);
  return 0;
}
static int udp_out(struct rte_mempool* mbuf_pool) {
  struct localhost* host;
  for(host = lhost; host != NULL; host = host->next) {
    struct offload* ol;
    int nb_send = rte_ring_mc_dequeue(host->send_buf, (void**)&ol);
    if(nb_send < 0)
      continue;
    struct in_addr addr;
    addr.s_addr = ol->dip;
    printf("udp_out --> src: %s:%d\n", inet_ntoa(addr), ntohs(ol->dport));
    uint8_t* dstmac = ng_get_dst_macaddr(ol->dip);
    if(dstmac == NULL) {
      struct rte_mbuf* arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, ol->sip, ol->dip);
      struct inout_ring* ring = inout_ring_instance();
      rte_ring_mp_enqueue_burst(ring->out, (void**)&arpbuf, 1, NULL);
      rte_ring_mp_enqueue(host->send_buf, ol);
    }
    else {
      struct rte_mbuf* udpbuf = ng_send_udp(mbuf_pool, ol->sip, ol->dip, ol->sport, ol->dport, host->localmac, dstmac, ol->data, ol->length);
      struct inout_ring* ring = inout_ring_instance();
      rte_ring_mp_enqueue_burst(ring->out, (void**)&udpbuf, 1, NULL);
    }
  }
  return 0;
}
static int nsocket(__attribute__((unused)) int domain, int type, __attribute__((unused)) int protocol) {
  int fd = get_fd_frombitmap();
  struct localhost* host = rte_malloc("localhost", sizeof(struct localhost), 0);
  if(host == NULL) {
    return -1;
  }
  memset(host, 0, sizeof(struct localhost));
  host->fd = fd;
  if(type == SOCK_DGRAM)
    host->proto = IPPROTO_UDP;
  host->send_buf = rte_ring_create("send buffer", RING_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
  if(host->send_buf == NULL) {
    rte_free(host);
    return -1;
  }
  host->recv_buf = rte_ring_create("recv buffer", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  if(host->recv_buf == NULL) {
    rte_ring_free(host->send_buf);
    rte_free(host);
    return -1;
  }
  pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;
  pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;
  rte_memcpy(&host->cond, &blank_cond, sizeof(pthread_cond_t));
  rte_memcpy(&host->mutex, &blank_mutex, sizeof(pthread_mutex_t));
  LL_ADD(host, lhost);
  return fd;
  
}
static int nbind(int sockfd, const struct sockaddr *addr, __attribute__((unused))socklen_t addrlen) {
  struct localhost* host = get_host_fromfd(sockfd);
  if(host == NULL) {
    return -1;
  }
  const struct sockaddr_in* addr_in = (const struct sockaddr_in*)addr;
  host->localport = addr_in->sin_port;
  rte_memcpy(&host->localip, &addr_in->sin_addr.s_addr, sizeof(uint32_t));
  rte_memcpy(host->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);
  return 0;
}
static ssize_t nrecvfrom(int sockfd, void *buf, size_t len, __attribute__((unused))int flags, 
    struct sockaddr *src_addr, __attribute__((unused))socklen_t *addrlen) {
  struct localhost* host = get_host_fromfd(sockfd);
  if(host == NULL) {
    return -1;
  }
  struct offload* ol = NULL;
  uint8_t* ptr = NULL;
  struct sockaddr_in* addr_in = (struct sockaddr_in*)src_addr;
  int nb = -1;
  pthread_mutex_lock(&host->mutex);
  while((nb = rte_ring_mc_dequeue(host->recv_buf, (void**)&ol)) < 0) {
    pthread_cond_wait(&host->cond, &host->mutex);
  }
  pthread_mutex_unlock(&host->mutex);
  addr_in->sin_port = ol->sport;
  rte_memcpy(&addr_in->sin_addr.s_addr, &ol->sip, sizeof(uint32_t));
  if(len < ol->length) {
    rte_memcpy(buf, ol->data, len);
    ptr = rte_malloc("ptr", ol->length - len, 0);
    rte_memcpy(ptr, ol->data + len, ol->length - len);
    ol->length -= len;
    rte_free(ol->data);
    ol->data = ptr;
    rte_ring_mp_enqueue(host->recv_buf, ol);
    return len;
  }
  else {
    uint16_t length = ol->length;
    rte_memcpy(buf, ol->data, ol->length);
    rte_free(ol->data);
    rte_free(ol);
    return length;
  }
}
static ssize_t nsendto(int sockfd, const void *buf, size_t len, __attribute__((unused))int flags,
                      const struct sockaddr *dest_addr, __attribute__((unused))socklen_t addrlen) {
  struct localhost* host = get_host_fromfd(sockfd);
  if(host == NULL) {
    return -1;
  }
  const struct sockaddr_in* addr_in = (const struct sockaddr_in*)dest_addr;
  struct offload* ol = rte_malloc("ol", sizeof(struct offload), 0);
  if(ol == NULL) {
    return -1;
  }
  ol->dport = addr_in->sin_port;
  ol->sport = host->localport;
  ol->dip = addr_in->sin_addr.s_addr;
  ol->sip = host->localip;
  ol->length = len;
  ol->data = rte_malloc("data", len, 0);
  if(ol->data == NULL) {
    rte_free(ol);
    return -1;
  }
  rte_memcpy(ol->data, buf, len);
  rte_ring_mp_enqueue(host->send_buf, ol);
  return len;
}
static int nclose(int fd) {
  struct localhost* host = get_host_fromfd(fd);
  if(host == NULL) {
    return -1;
  }
  LL_REMOVE(host, lhost);
  if(host->send_buf) {
  
    rte_ring_free(host->send_buf);
  }
  if(host->recv_buf) {
    rte_ring_free(host->recv_buf);
  }
  rte_free(host);
  return 0;
}
static int udp_server_entry(__attribute__((unused))  void *arg) {
  int connfd = nsocket(AF_INET, SOCK_DGRAM, 0);
  if (connfd == -1) {
    printf("sockfd failed\n");
    return -1;
  } 
  struct sockaddr_in localaddr, clientaddr; // struct sockaddr 
  memset(&localaddr, 0, sizeof(struct sockaddr_in));
  localaddr.sin_port = htons(8889);
  localaddr.sin_family = AF_INET;
  localaddr.sin_addr.s_addr = inet_addr("192.168.1.184"); // 0.0.0.0
  
  nbind(connfd, (struct sockaddr*)&localaddr, sizeof(localaddr));
  char buffer[UDP_APP_RECV_BUFFER_SIZE] = {0};
  socklen_t addrlen = sizeof(clientaddr);
  while (1) {
    if (nrecvfrom(connfd, buffer, UDP_APP_RECV_BUFFER_SIZE, 0, 
      (struct sockaddr*)&clientaddr, &addrlen) < 0) {
      continue;
    } 
    else {
      printf("recv from %s:%d, data:%s\n", inet_ntoa(clientaddr.sin_addr), 
        ntohs(clientaddr.sin_port), buffer);
      nsendto(connfd, buffer, strlen(buffer), 0, 
        (struct sockaddr*)&clientaddr, sizeof(clientaddr));
    }
  }
  nclose(connfd);
}
#define TCP_OPTION_LENGTH 10
#define TCP_MAX_SEQ   4294967295
#define TCP_INITIAL_WINDOW  14600
typedef enum _LN_TCP_STATUS {
  LN_TCP_STATUS_CLOSED = 0,
  LN_TCP_STATUS_LISTEN,
  LN_TCP_STATUS_SYN_RECV,
  LN_TCP_STATUS_SYN_SEND,
  LN_TCP_STATUS_ESTABLELISTEN,
  LN_TCP_STATUS_FIN_WAIT_1,
  LN_TCP_STATUS_FIN_WAIT_2,
  LN_TCP_STATUS_CLOSEING,
  LN_TCP_STATUS_TIME_WAIT,
  LN_TCP_STATUS_CLOSE_WAIT,
  LN_TCP_STATUS_LAST_ACK,
} LN_TCP_STATUS;
struct ln_tcp_stream {
  int fd;
  uint32_t sip;
  uint32_t dip;
  uint16_t sport;
  uint16_t dport;
  uint16_t proto;
  uint8_t localmac[RTE_ETHER_ADDR_LEN];
  uint32_t snd_nxt;
  uint32_t rev_nxt;
  LN_TCP_STATUS status;
  struct rte_ring* snd_buf;
  struct rte_ring* rev_buf;
  struct ln_tcp_stream* prev;
  struct ln_tcp_stream* next;
};
struct ln_tcp_table {
  int count;
  struct ln_tcp_stream* streams;
};
struct ln_tcp_fragment {
  uint16_t sport;
  uint16_t dport;
  uint32_t seqnum;
  uint32_t acknum;
  uint8_t  hdrlen_off;
  uint8_t  tcp_flags;
  uint16_t windows;
  uint16_t cksum;
  uint16_t tcp_urp;
  int optlen;
  uint32_t option[TCP_OPTION_LENGTH];
  uint8_t* data;
  int length;
};
struct ln_tcp_table* tcpt = NULL;
static struct ln_tcp_table* ln_tcp_instance(void) {
  if(tcpt == NULL) {
    tcpt = rte_malloc("tcpt", sizeof(struct ln_tcp_table), 0);
    if(!tcpt) {
      rte_exit(EXIT_FAILURE, "Error with malloc tcpt");
    }
    memset(tcpt, 0, sizeof(struct ln_tcp_table));
  }
  return tcpt;
}
static struct ln_tcp_stream* ln_tcp_stream_search(uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport) {
  struct ln_tcp_table* table = ln_tcp_instance();
  struct ln_tcp_stream* iter;
  
  for(iter = table->streams; iter != NULL; iter = iter->next) {
    if(iter->dip == dip && iter->sip == sip && iter->sport == sport && iter->dport == dport) {
      
      return iter;
    }
  }
  return NULL;
}
static struct ln_tcp_stream* ln_tcp_stream_create(uint32_t sip, uint32_t dip, uint32_t sport, uint32_t dport) {
  struct ln_tcp_stream* stream = rte_malloc("ln_tcp_stream", sizeof(struct ln_tcp_stream), 0);
  if(!stream) return NULL;
  stream->sip = sip;
  stream->dip = dip;
  stream->sport = sport;
  stream->dport = dport;
  stream->proto = IPPROTO_TCP;
  stream->status = LN_TCP_STATUS_LISTEN;
  uint32_t next_seed = time(NULL);
  stream->snd_nxt = rand_r(&next_seed) % TCP_MAX_SEQ;
  stream->rev_buf = rte_ring_create("tcp_rev_ring", RING_SIZE, rte_socket_id(), 0);
  stream->snd_buf = rte_ring_create("tcp_snd_ring", RING_SIZE, rte_socket_id(), 0);
  rte_memcpy(stream->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);
  struct ln_tcp_table* table = ln_tcp_instance();
  LL_ADD(stream, table->streams);
  table->count++;
  return stream;
}
static int ln_tcp_handle_listen(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {
  if(hdr->tcp_flags & RTE_TCP_SYN_FLAG) {
    if(stream->status == LN_TCP_STATUS_LISTEN) {
      struct ln_tcp_fragment* fragment = rte_malloc("tcp_fragment", sizeof(struct ln_tcp_fragment), 0);
      if(!fragment) {
        return -1;
      }
      memset(fragment, 0, sizeof(struct ln_tcp_fragment));
      
      fragment->sport = hdr->dst_port;
      fragment->dport = hdr->src_port;
      struct in_addr addr;
      addr.s_addr = stream->sip;
      printf("tcp --> src: %s:%d ", inet_ntoa(addr), ntohs(hdr->src_port));
      addr.s_addr = stream->dip;
      printf("  --> dst: %s:%d\n", inet_ntoa(addr), ntohs(hdr->dst_port));
      fragment->seqnum = stream->snd_nxt;
      printf("before get ack\n");
      fragment->acknum = ntohl(hdr->sent_seq) + 1;
      printf("before get flags\n");
      fragment->tcp_flags = (RTE_TCP_ACK_FLAG | RTE_TCP_SYN_FLAG);
      
      fragment->windows = TCP_INITIAL_WINDOW;
      fragment->hdrlen_off = 0x50;
      fragment->data = NULL;
      fragment->length = 0;
      rte_ring_mp_enqueue(stream->snd_buf, fragment);
      stream->status = LN_TCP_STATUS_SYN_RECV;
    }
  }
  return 0;
}
static int ln_tcp_handle_syn_recv(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {
  if(hdr->tcp_flags & RTE_TCP_ACK_FLAG) {
    if(stream->status == LN_TCP_STATUS_SYN_RECV) {
      uint32_t ack = ntohl(hdr->recv_ack);
      if(ack == stream->snd_nxt + 1) {
        
      }
      stream->status = LN_TCP_STATUS_ESTABLELISTEN;
    }
  }
  return 0;
}
static int ln_tcp_process(struct rte_mbuf* tcpmbuf) {
  printf("ln_tcp_process\n");
  struct rte_ipv4_hdr* iphdr = rte_pktmbuf_mtod_offset(tcpmbuf, struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));
  struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
#if 1
  uint16_t tcpcksum = tcphdr->cksum;
  tcphdr->cksum = 0;
  uint16_t cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);
  if(tcpcksum != cksum) {
    printf("cksum: %x, tcp cksum: %x\n", cksum, tcpcksum);
    return -1;
  }
#endif
  struct ln_tcp_stream* stream = ln_tcp_stream_search(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
  if(stream == NULL) {
    stream = ln_tcp_stream_create(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
    
    if(stream == NULL)
      return -2;
  }
  switch(stream->status) {
    case LN_TCP_STATUS_CLOSED:
      break;
    case LN_TCP_STATUS_LISTEN:
      printf("listen\n");
      ln_tcp_handle_listen(stream, tcphdr);
      break;
    case LN_TCP_STATUS_SYN_RECV:
      printf("recv\n");
      ln_tcp_handle_syn_recv(stream, tcphdr);
      break;
    case LN_TCP_STATUS_SYN_SEND:
      break;
    case LN_TCP_STATUS_ESTABLELISTEN:
    {
      printf("establelisten\n");
      uint8_t hdrlen = (tcphdr->data_off & 0xF0);
      //hdrlen >= 4;
      uint8_t* offload = (uint8_t*)(tcphdr + 1) + hdrlen * 4;
      printf("offload: %s\n", offload);
      break;
    }
    case LN_TCP_STATUS_FIN_WAIT_1:
      break;
    case LN_TCP_STATUS_FIN_WAIT_2:
      break;
    case LN_TCP_STATUS_CLOSEING:
      break;
    case LN_TCP_STATUS_TIME_WAIT:
      break;
    case LN_TCP_STATUS_CLOSE_WAIT:
      break;
    case LN_TCP_STATUS_LAST_ACK:
      break;
  }
  return 0;
}
static int ln_encode_tcp_pkt(uint8_t* msg, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {
  printf("ln_encode_tcp_pkt\n");
  uint16_t hdr_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr);
  uint16_t total_len = fragment->length + hdr_len + fragment->optlen * sizeof(uint32_t);
  struct rte_ether_hdr* ethhdr = (struct rte_ether_hdr*)msg;
  rte_memcpy(ethhdr->s_addr.addr_bytes, smac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(ethhdr->d_addr.addr_bytes, dmac, RTE_ETHER_ADDR_LEN);
  ethhdr->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  struct rte_ipv4_hdr* iphdr = (struct rte_ipv4_hdr*)(ethhdr + 1);
  iphdr->version_ihl = 0x45;
  iphdr->time_to_live = 64;
  iphdr->src_addr = sip;
  iphdr->dst_addr = dip;
  iphdr->next_proto_id = IPPROTO_TCP;
  iphdr->fragment_offset = 0;
  iphdr->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
  iphdr->packet_id = 0;
  iphdr->type_of_service = 0;
  iphdr->hdr_checksum = 0;
  iphdr->hdr_checksum = rte_ipv4_cksum(iphdr);
  struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
  tcphdr->src_port = fragment->sport;
  tcphdr->dst_port = fragment->dport;
  tcphdr->recv_ack = htonl(fragment->acknum);
  tcphdr->sent_seq = htonl(fragment->seqnum);
  tcphdr->data_off = fragment->hdrlen_off;
  tcphdr->rx_win = fragment->windows;
  tcphdr->tcp_flags = fragment->tcp_flags;
  tcphdr->tcp_urp = fragment->tcp_urp;
  if(fragment->data != NULL) {
    uint8_t* offload = (uint8_t*)(tcphdr + 1) + fragment->optlen * sizeof(uint32_t);
    rte_memcpy(offload, fragment->data, fragment->length);
  }
  tcphdr->cksum = 0;
  tcphdr->cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);
  return 0;
}
static struct rte_mbuf* ln_send_tcp(struct rte_mempool* mbuf_pool, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {
  struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if(!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc tcp\n");
  }
  uint16_t total_len = fragment->length + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr) + fragment->optlen * sizeof(uint32_t);
  mbuf->pkt_len = total_len;
  mbuf->data_len = total_len;
  uint8_t* pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
  ln_encode_tcp_pkt(pktdata, sip, dip, smac, dmac, fragment);
  return mbuf;
}
static int ln_tcp_out(struct rte_mempool* mbuf_pool) {
  struct ln_tcp_table* table = ln_tcp_instance();
  struct ln_tcp_stream* stream = NULL;
  for(stream = table->streams; stream != NULL; stream = stream->next) {
    struct ln_tcp_fragment* fragment = NULL;
    int nb_snd = rte_ring_mc_dequeue(stream->snd_buf, (void**)&fragment);
    if(nb_snd < 0)
      continue;
    uint8_t* dmac = ng_get_dst_macaddr(stream->sip);
    if(dmac == NULL) {
      struct rte_mbuf* arp_buf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, stream->dip, stream->sip);
      struct inout_ring* ring = inout_ring_instance();
      rte_ring_mp_enqueue_burst(ring->out, (void**)&arp_buf, 1, NULL);
      rte_ring_mp_enqueue(stream->snd_buf, fragment);
    }
    else {
      struct rte_mbuf* tcp_buf = ln_send_tcp(mbuf_pool, stream->dip, stream->sip, stream->localmac, dmac, fragment);
      struct inout_ring* ring = inout_ring_instance();
      rte_ring_mp_enqueue_burst(ring->out, (void**)&tcp_buf, 1, NULL);
      rte_free(fragment);
    }
  }
  return 0;
}
int main(int argc, char *argv[]) {
  if (rte_eal_init(argc, argv) < 0) {
    rte_exit(EXIT_FAILURE, "Error with EAL init\n");
    
  }
  struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool", NUM_MBUFS,
    0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
  if (mbuf_pool == NULL) {
    rte_exit(EXIT_FAILURE, "Could not create mbuf pool\n");
  }
  ng_init_port(mbuf_pool);
  rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr *)gSrcMac);
#if ENABLE_TIMER
  rte_timer_subsystem_init();
  struct rte_timer arp_timer;
  rte_timer_init(&arp_timer);
  uint64_t hz = rte_get_timer_hz();
  unsigned lcore_id = rte_lcore_id();
  rte_timer_reset(&arp_timer, hz, PERIODICAL, lcore_id, arp_request_timer_cb, mbuf_pool);
#endif
  struct inout_ring* ring = inout_ring_instance();
  if(ring == NULL)
    rte_exit(EXIT_FAILURE, "Could not init ioInst\n");
  if(ring->in == NULL)
    ring->in = rte_ring_create("ring in", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  if(ring->out == NULL)
    ring->out = rte_ring_create("ring out", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  lcore_id = rte_get_next_lcore(lcore_id, 1, 0);
  rte_eal_remote_launch(pkt_process, mbuf_pool, lcore_id);
  lcore_id = rte_get_next_lcore(lcore_id, 1, 0);
  rte_eal_remote_launch(udp_server_entry, mbuf_pool, lcore_id);
  while (1) {
    struct rte_mbuf* rx[BURST_SIZE];
    unsigned nb_recv = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);
    if(nb_recv > BURST_SIZE) {
      rte_exit(EXIT_FAILURE, "Error receiving from eth\n");
    }
    else if(nb_recv > 0){
      rte_ring_sp_enqueue_burst(ring->in, (void**)rx, nb_recv, NULL);
    }
    struct rte_mbuf* tx[BURST_SIZE];
    unsigned nb_send = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE, NULL);
    if(nb_send > 0) {
      rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_send);
      unsigned i = 0;
      for(i = 0; i < nb_send; i++) {
        rte_pktmbuf_free(tx[i]);
      }
    }
#if ENABLE_TIMER
    static uint64_t prev_tsc = 0, cur_tsc;
    uint64_t diff_tsc;
    cur_tsc = rte_rdtsc();
    diff_tsc = cur_tsc - prev_tsc;
    if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
      rte_timer_manage();
      prev_tsc = cur_tsc;
    }
#endif
  }
}


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
10天前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
16 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
9天前
初步认识栈和队列
初步认识栈和队列
34 10
|
4天前
数据结构(栈与列队)
数据结构(栈与列队)
11 1
|
10天前
|
算法
数据结构与算法二:栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式
这篇文章讲解了栈的基本概念及其应用,并详细介绍了中缀表达式转换为后缀表达式的算法和实现步骤。
25 3
|
8天前
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
34 1
|
11天前
|
存储 安全 Java
【用Java学习数据结构系列】探索栈和队列的无尽秘密
【用Java学习数据结构系列】探索栈和队列的无尽秘密
25 2
|
4天前
【数据结构】-- 栈和队列
【数据结构】-- 栈和队列
8 0
|
9天前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
9天前
|
存储 C语言
栈和队列题目练习
栈和队列题目练习
11 0
|
11天前
|
C语言
数据结构------栈(Stack)和队列(Queue)
数据结构------栈(Stack)和队列(Queue)
14 0