用户态协议栈05—架构优化

简介: 用户态协议栈05—架构优化

优化部分

  • 添加了in和out两个环形缓冲区,收到数据包后添加到in队列;经过消费者线程处理之后,将需要发送的数据包添加到out队列。
  • 添加数据包解析线程(消费者线程),架构分层

#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_timer.h>
#include <rte_ring.h>
#include <stdio.h>
#include <arpa/inet.h>
#include "arp.h"
#define ENABLE_SEND   1
#define ENABLE_ARP    1
#define ENABLE_ICMP   1
#define ENABLE_ARP_REPLY  1
#define ENABLE_DEBUG    1
#define ENABLE_TIMER    1
#define NUM_MBUFS (4096-1)
#define BURST_SIZE  32
#define RING_SIZE 1024
#define TIMER_RESOLUTION_CYCLES 120000000000ULL // 10ms * 1000 = 10s * 6
struct inout_ring {
  struct rte_ring* in;
  struct rte_ring* out;
};
static struct inout_ring* ioInst = NULL;
static struct inout_ring* inout_ring_instance(void) {
  if(ioInst == NULL) {
    ioInst = rte_malloc("inout ring", sizeof(struct inout_ring), 0);
    memset(ioInst, 0, sizeof(struct inout_ring));
  }
  return ioInst;
}
#if ENABLE_SEND
#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
static uint32_t gLocalIp = MAKE_IPV4_ADDR(192, 168, 1, 184);
static uint32_t gSrcIp; //
static uint32_t gDstIp;
static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
static uint16_t gSrcPort;
static uint16_t gDstPort;
#endif
#if ENABLE_ARP_REPLY
static uint8_t gDefaultArpMac[RTE_ETHER_ADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
#endif
int gDpdkPortId = 0;
static const struct rte_eth_conf port_conf_default = {
  .rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};
static void ng_init_port(struct rte_mempool *mbuf_pool) {
  uint16_t nb_sys_ports= rte_eth_dev_count_avail(); //
  if (nb_sys_ports == 0) {
    rte_exit(EXIT_FAILURE, "No Supported eth found\n");
  }
  struct rte_eth_dev_info dev_info;
  rte_eth_dev_info_get(gDpdkPortId, &dev_info); //
  
  const int num_rx_queues = 1;
  const int num_tx_queues = 1;
  struct rte_eth_conf port_conf = port_conf_default;
  rte_eth_dev_configure(gDpdkPortId, num_rx_queues, num_tx_queues, &port_conf);
  if (rte_eth_rx_queue_setup(gDpdkPortId, 0 , 1024, 
    rte_eth_dev_socket_id(gDpdkPortId),NULL, mbuf_pool) < 0) {
    rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");
  }
  
#if ENABLE_SEND
  struct rte_eth_txconf txq_conf = dev_info.default_txconf;
  txq_conf.offloads = port_conf.rxmode.offloads;
  if (rte_eth_tx_queue_setup(gDpdkPortId, 0 , 1024, 
    rte_eth_dev_socket_id(gDpdkPortId), &txq_conf) < 0) {
    
    rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
    
  }
#endif
  if (rte_eth_dev_start(gDpdkPortId) < 0 ) {
    rte_exit(EXIT_FAILURE, "Could not start\n");
  }
}
static int ng_encode_udp_pkt(uint8_t *msg, unsigned char *data, uint16_t total_len) {
  // encode 
  // 1 ethhdr
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(eth->d_addr.addr_bytes, gDstMac, RTE_ETHER_ADDR_LEN);
  eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  
  // 2 iphdr 
  struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
  ip->version_ihl = 0x45;
  ip->type_of_service = 0;
  ip->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
  ip->packet_id = 0;
  ip->fragment_offset = 0;
  ip->time_to_live = 64; // ttl = 64
  ip->next_proto_id = IPPROTO_UDP;
  ip->src_addr = gSrcIp;
  ip->dst_addr = gDstIp;
  
  ip->hdr_checksum = 0;
  ip->hdr_checksum = rte_ipv4_cksum(ip);
  // 3 udphdr 
  struct rte_udp_hdr *udp = (struct rte_udp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
  udp->src_port = gSrcPort;
  udp->dst_port = gDstPort;
  uint16_t udplen = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
  udp->dgram_len = htons(udplen);
  rte_memcpy((uint8_t*)(udp+1), data, udplen);
  udp->dgram_cksum = 0;
  udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);
  struct in_addr addr;
  addr.s_addr = gSrcIp;
  printf(" --> src: %s:%d, ", inet_ntoa(addr), ntohs(gSrcPort));
  addr.s_addr = gDstIp;
  printf("dst: %s:%d\n", inet_ntoa(addr), ntohs(gDstPort));
  return 0;
}
static struct rte_mbuf * ng_send_udp(struct rte_mempool *mbuf_pool, uint8_t *data, uint16_t length) {
  // mempool --> mbuf
  const unsigned total_len = length + 42;
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
  }
  mbuf->pkt_len = total_len;
  mbuf->data_len = total_len;
  uint8_t *pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
  ng_encode_udp_pkt(pktdata, data, total_len);
  return mbuf;
}
#if ENABLE_ARP
static int ng_encode_arp_pkt(uint8_t *msg, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
  // 1 ethhdr
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  if (!strncmp((const char *)dst_mac, (const char *)gDefaultArpMac, RTE_ETHER_ADDR_LEN)) {
    uint8_t mac[RTE_ETHER_ADDR_LEN] = {0x0};
    rte_memcpy(eth->d_addr.addr_bytes, mac, RTE_ETHER_ADDR_LEN);
  } else {
    rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  }
  eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
  // 2 arp 
  struct rte_arp_hdr *arp = (struct rte_arp_hdr *)(eth + 1);
  arp->arp_hardware = htons(1);
  arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
  arp->arp_hlen = RTE_ETHER_ADDR_LEN;
  arp->arp_plen = sizeof(uint32_t);
  arp->arp_opcode = htons(opcode);
  rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy( arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  arp->arp_data.arp_sip = sip;
  arp->arp_data.arp_tip = dip;
  
  return 0;
}
static struct rte_mbuf *ng_send_arp(struct rte_mempool *mbuf_pool, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
  const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
  }
  mbuf->pkt_len = total_length;
  mbuf->data_len = total_length;
  uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
  ng_encode_arp_pkt(pkt_data, opcode, dst_mac, sip, dip);
  return mbuf;
}
#endif
#if ENABLE_ICMP
static uint16_t ng_checksum(uint16_t *addr, int count) {
  register long sum = 0;
  while (count > 1) {
    sum += *(unsigned short*)addr++;
    count -= 2;
  
  }
  if (count > 0) {
    sum += *(unsigned char *)addr;
  }
  while (sum >> 16) {
    sum = (sum & 0xffff) + (sum >> 16);
  }
  return ~sum;
}
static int ng_encode_icmp_pkt(uint8_t *msg, uint8_t *dst_mac,
    uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
  // 1 ether
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  // 2 ip
  struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
  ip->version_ihl = 0x45;
  ip->type_of_service = 0;
  ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
  ip->packet_id = 0;
  ip->fragment_offset = 0;
  ip->time_to_live = 64; // ttl = 64
  ip->next_proto_id = IPPROTO_ICMP;
  ip->src_addr = sip;
  ip->dst_addr = dip;
  
  ip->hdr_checksum = 0;
  ip->hdr_checksum = rte_ipv4_cksum(ip);
  // 3 icmp 
  struct rte_icmp_hdr *icmp = (struct rte_icmp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
  icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
  icmp->icmp_code = 0;
  icmp->icmp_ident = id;
  icmp->icmp_seq_nb = seqnb;
  icmp->icmp_cksum = 0;
  icmp->icmp_cksum = ng_checksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));
  return 0;
}
static struct rte_mbuf *ng_send_icmp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac,
    uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
  const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
  }
  
  mbuf->pkt_len = total_length;
  mbuf->data_len = total_length;
  uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
  ng_encode_icmp_pkt(pkt_data, dst_mac, sip, dip, id, seqnb);
  return mbuf;
}
#endif
static void 
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
  char buf[RTE_ETHER_ADDR_FMT_SIZE];
  rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
  printf("%s%s", name, buf);
}
#if ENABLE_TIMER
static void
arp_request_timer_cb(__attribute__((unused)) struct rte_timer *tim,
     void *arg) {
  struct rte_mempool *mbuf_pool = (struct rte_mempool *)arg;
#if 0
  struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, ahdr->arp_data.arp_sha.addr_bytes, 
    ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
  rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
  rte_pktmbuf_free(arpbuf);
#endif
  
  int i = 0;
  for (i = 1;i <= 254;i ++) {
    uint32_t dstip = (gLocalIp & 0x00FFFFFF) | (0xFF000000 & (i << 24));
    struct in_addr addr;
    addr.s_addr = dstip;
    printf("arp ---> src: %s \n", inet_ntoa(addr));
    struct rte_mbuf *arpbuf = NULL;
    uint8_t *dstmac = ng_get_dst_macaddr(dstip);
    if (dstmac == NULL) {
      arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, gLocalIp, dstip);
    
    } else {
      arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, dstmac, gLocalIp, dstip);
    }
    rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
    rte_pktmbuf_free(arpbuf);
    
  }
  
}
#endif
static int pkt_process(void* arg) {
  struct rte_mempool* mbuf_pool = (struct rte_mempool*)arg;
  struct inout_ring* ring = inout_ring_instance();
  while(1) {
    struct rte_mbuf *mbufs[BURST_SIZE];
    unsigned num_recvd = rte_ring_mc_dequeue_burst(ring->in, (void**)mbufs, BURST_SIZE, NULL);
    unsigned i = 0;
    for (i = 0;i < num_recvd;i++) {
      struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i], struct rte_ether_hdr*);
#if ENABLE_ARP
      if (ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
        struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i], 
          struct rte_arp_hdr *, sizeof(struct rte_ether_hdr));
        
        struct in_addr addr;
        addr.s_addr = ahdr->arp_data.arp_tip;
        printf("arp ---> src: %s ", inet_ntoa(addr));
        addr.s_addr = gLocalIp;
        printf(" local: %s \n", inet_ntoa(addr));
        if (ahdr->arp_data.arp_tip == gLocalIp) {
          if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REQUEST)) {
            printf("arp --> request\n");
            struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REPLY, ahdr->arp_data.arp_sha.addr_bytes, 
              ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
            //rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
            //rte_pktmbuf_free(arpbuf);
            rte_ring_mp_enqueue_burst(ring->out, (void**)&arpbuf, 1, NULL);
          } else if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REPLY)) {
            printf("arp --> reply\n");
            struct arp_table *table = arp_table_instance();
            uint8_t *hwaddr = ng_get_dst_macaddr(ahdr->arp_data.arp_sip);
            if (hwaddr == NULL) {
              struct arp_entry *entry = rte_malloc("arp_entry",sizeof(struct arp_entry), 0);
              if (entry) {
                memset(entry, 0, sizeof(struct arp_entry));
                entry->ip = ahdr->arp_data.arp_sip;
                rte_memcpy(entry->hwaddr, ahdr->arp_data.arp_sha.addr_bytes, RTE_ETHER_ADDR_LEN);
                entry->type = 0;
                
                LL_ADD(entry, table->entries);
                table->count ++;
              }
            }
#if ENABLE_DEBUG
            struct arp_entry *iter;
            for (iter = table->entries; iter != NULL; iter = iter->next) {
          
              struct in_addr addr;
              addr.s_addr = iter->ip;
              print_ethaddr("arp table --> mac: ", (struct rte_ether_addr *)iter->hwaddr);
                
              printf(" ip: %s \n", inet_ntoa(addr));
          
            }
#endif
            rte_pktmbuf_free(mbufs[i]);
          }
        
          continue;
        } 
      }
#endif
      if (ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
        continue;
      }
      struct rte_ipv4_hdr *iphdr =  rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, 
        sizeof(struct rte_ether_hdr));
      
      if (iphdr->next_proto_id == IPPROTO_UDP) {
        struct rte_udp_hdr *udphdr = (struct rte_udp_hdr *)(iphdr + 1);
#if ENABLE_SEND //
        rte_memcpy(gDstMac, ehdr->s_addr.addr_bytes, RTE_ETHER_ADDR_LEN);
        
        rte_memcpy(&gSrcIp, &iphdr->dst_addr, sizeof(uint32_t));
        rte_memcpy(&gDstIp, &iphdr->src_addr, sizeof(uint32_t));
        rte_memcpy(&gSrcPort, &udphdr->dst_port, sizeof(uint16_t));
        rte_memcpy(&gDstPort, &udphdr->src_port, sizeof(uint16_t));
#endif
        uint16_t length = ntohs(udphdr->dgram_len);
        *((char*)udphdr + length) = '\0';
        struct in_addr addr;
        addr.s_addr = iphdr->src_addr;
        printf("src: %s:%d, ", inet_ntoa(addr), ntohs(udphdr->src_port));
        addr.s_addr = iphdr->dst_addr;
        printf("dst: %s:%d, %s\n", inet_ntoa(addr), ntohs(udphdr->dst_port), 
          (char *)(udphdr+1));
#if ENABLE_SEND
        struct rte_mbuf *txbuf = ng_send_udp(mbuf_pool, (uint8_t *)(udphdr+1), length);
        //rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
        //rte_pktmbuf_free(txbuf);
        rte_ring_mp_enqueue_burst(ring->out, (void**)&txbuf, 1, NULL);
        
#endif
        rte_pktmbuf_free(mbufs[i]);
      }
#if ENABLE_ICMP
      if (iphdr->next_proto_id == IPPROTO_ICMP) {
        struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);
        
        struct in_addr addr;
        addr.s_addr = iphdr->src_addr;
        printf("icmp ---> src: %s ", inet_ntoa(addr));
        
        if (icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {
          addr.s_addr = iphdr->dst_addr;
          printf(" local: %s , type : %d\n", inet_ntoa(addr), icmphdr->icmp_type);
        
          struct rte_mbuf *txbuf = ng_send_icmp(mbuf_pool, ehdr->s_addr.addr_bytes,
            iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);
          //rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
          //rte_pktmbuf_free(txbuf);
          rte_ring_mp_enqueue_burst(ring->out, (void**)&txbuf, 1, NULL);
          rte_pktmbuf_free(mbufs[i]);
        }
        
      }
#endif
      
    }
  }
  return 0;
}
int main(int argc, char *argv[]) {
  if (rte_eal_init(argc, argv) < 0) {
    rte_exit(EXIT_FAILURE, "Error with EAL init\n");
    
  }
  struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool", NUM_MBUFS,
    0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
  if (mbuf_pool == NULL) {
    rte_exit(EXIT_FAILURE, "Could not create mbuf pool\n");
  }
  ng_init_port(mbuf_pool);
  rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr *)gSrcMac);
#if ENABLE_TIMER
  rte_timer_subsystem_init();
  struct rte_timer arp_timer;
  rte_timer_init(&arp_timer);
  uint64_t hz = rte_get_timer_hz();
  unsigned lcore_id = rte_lcore_id();
  rte_timer_reset(&arp_timer, hz, PERIODICAL, lcore_id, arp_request_timer_cb, mbuf_pool);
#endif
  struct inout_ring* ring = inout_ring_instance();
  if(ring == NULL)
    rte_exit(EXIT_FAILURE, "Could not init ioInst\n");
  if(ring->in == NULL)
    ring->in = rte_ring_create("ring in", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  if(ring->out == NULL)
    ring->out = rte_ring_create("ring out", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  rte_eal_remote_launch(pkt_process, mbuf_pool, rte_get_next_lcore(lcore_id, 1, 0));
  while (1) {
    struct rte_mbuf* rx[BURST_SIZE];
    unsigned nb_recv = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);
    if(nb_recv > BURST_SIZE) {
      rte_exit(EXIT_FAILURE, "Error receiving from eth\n");
    }
    else {
      rte_ring_sp_enqueue_burst(ring->in, (void**)rx, nb_recv, NULL);
    }
    struct rte_mbuf* tx[BURST_SIZE];
    unsigned nb_send = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE, NULL);
    if(nb_send > 0) {
      rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_send);
      unsigned i = 0;
      for(i = 0; i < nb_send; i++) {
        rte_pktmbuf_free(tx[i]);
      }
    }
#if ENABLE_TIMER
    static uint64_t prev_tsc = 0, cur_tsc;
    uint64_t diff_tsc;
    cur_tsc = rte_rdtsc();
    diff_tsc = cur_tsc - prev_tsc;
    if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
      rte_timer_manage();
      prev_tsc = cur_tsc;
    }
#endif
  }
}


相关文章
|
1月前
|
机器学习/深度学习 存储 人工智能
RAG系统文本检索优化:Cross-Encoder与Bi-Encoder架构技术对比与选择指南
本文将深入分析这两种编码架构的技术原理、数学基础、实现流程以及各自的优势与局限性,并探讨混合架构的应用策略。
135 10
RAG系统文本检索优化:Cross-Encoder与Bi-Encoder架构技术对比与选择指南
|
5月前
|
机器学习/深度学习 人工智能 文件存储
Llama Nemotron:英伟达开源基于Llama架构优化的推理模型,253B参数持平DeepSeek R1!
NVIDIA推出的Llama Nemotron系列推理模型,基于Llama架构优化,包含Nano/Super/Ultra三款,在数学推理、编程和工具调用等任务中展现卓越性能。
162 5
Llama Nemotron:英伟达开源基于Llama架构优化的推理模型,253B参数持平DeepSeek R1!
|
5月前
|
数据采集 运维 Serverless
云函数采集架构:Serverless模式下的动态IP与冷启动优化
本文探讨了在Serverless架构中使用云函数进行网页数据采集的挑战与解决方案。针对动态IP、冷启动及目标网站反爬策略等问题,提出了动态代理IP、请求头优化、云函数预热及容错设计等方法。通过网易云音乐歌曲信息采集案例,展示了如何结合Python代码实现高效的数据抓取,包括搜索、歌词与评论的获取。此方案不仅解决了传统采集方式在Serverless环境下的局限,还提升了系统的稳定性和性能。
152 0
|
1月前
|
数据采集 机器学习/深度学习 运维
从数据感知到决策优化:MyEMS 开源能源管理系统的技术架构与实践效能解析
MyEMS 是一款开源能源管理系统,采用分层解耦与模块化设计,支持多能源协同监测与智能优化调度。系统具备数据采集、分析、预警、碳核算等功能,助力企业实现节能降耗、安全管控与低碳转型,已在百余家全球企业落地应用,具备自主可控、成本低、安全性强等优势,面向虚拟电厂、数字孪生等未来场景持续演进。
104 0
|
2月前
|
缓存 Java 数据库
Java 项目分层架构实操指南及长尾关键词优化方案
本指南详解基于Spring Boot与Spring Cloud的Java微服务分层架构,以用户管理系统为例,涵盖技术选型、核心代码实现、服务治理及部署实践,助力掌握现代化Java企业级开发方案。
140 2
|
5月前
|
弹性计算 负载均衡 网络协议
阿里云SLB深度解析:从流量分发到架构优化的技术实践
本文深入探讨了阿里云负载均衡服务(SLB)的核心技术与应用场景,从流量分配到架构创新全面解析其价值。SLB不仅是简单的流量分发工具,更是支撑高并发、保障系统稳定性的智能中枢。文章涵盖四层与七层负载均衡原理、弹性伸缩引擎、智能DNS解析等核心技术,并结合电商大促、微服务灰度发布等实战场景提供实施指南。同时,针对性能调优与安全防护,分享连接复用优化、DDoS防御及零信任架构集成的实践经验,助力企业构建面向未来的弹性架构。
466 76
|
3月前
|
监控 搜索推荐 应用服务中间件
301重定向:网站迁移、SEO优化与架构重塑的核心引擎
301重定向是数字世界中确保网站迁移无缝过渡的关键策略。它通过HTTP状态码告知浏览器和搜索引擎资源的永久迁移,帮助维持权重传递与用户体验。本文深入解析301重定向的工作机制、SEO影响及实施策略,涵盖域名迁移、HTTPS升级、URL标准化等场景,并提供服务器配置示例(如.htaccess和Nginx规则)。同时,强调避免重定向链、循环等问题,推荐使用专业工具监控效果。掌握这些技巧,可确保网站在架构调整或迁移时保持流量稳定与搜索引擎信任,成为网站管理不可或缺的战略工具。
92 8
|
2月前
|
缓存 监控 API
电商API的微服务架构优化策略
随着电商快速发展,API成为连接用户、商家与系统的核心。本文探讨微服务架构下电商API的优化策略,分析高并发、低延迟与数据一致性等挑战,并提供服务拆分、缓存异步、监控容器化等实践方案,助力构建高性能、高可用的电商系统,提升用户体验与业务效率。
66 0
|
5月前
|
人工智能 JavaScript 开发工具
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。
4861 66

热门文章

最新文章