你要了解的2种AI思维链

简介: 我们使用的AI助手,一般是经过了预训练和微调这2个步骤,尽管训练出的模型能回答许多通用类问题,但是在遇到复杂问题时还是束手无策。

我们使用的AI助手,一般是经过了预训练和微调这2个步骤,尽管训练出的模型能回答许多通用类问题,但是在遇到复杂问题时还是束手无策。

直到有人提出了思维链方式,才解决了模型在面对复杂问题时的推理能力。

1、什么是思维链

思维链(Chain of Thought, CoT)是用于提高AI模型推理能力的方式。其核心原理就8个字:化繁为简、逐个击破

思维链的工作原理是,模拟人类思考问题的过程,通过将复杂的问题逐步分解,然后逐个向前解决这些简单问题,从而得出最终答案。

2、实现智能体的方式

智能体(AI Agent)用于更加智能 更加强调推理的场景,思维链便是用于AI Agent的场景,在这种场景下可以发挥它的优势。

在AI Agent领域里,常见的实现思维链的机制有2种,Plan-and-Executor机制和ReAct机制。

2.1、Plan-and-Executor机制

Plan-and-Executor机制是分离规划 和 执行这2个环节。它将问题解决过程分为两个阶段:规划和执行

规划阶段:

在这个阶段,主要是在智能体里分析问题,制定一个详细的解决方案计划。这个阶段通常会涉及到大量的计算过程,用来确定出最优的行动计划。规划的结果是:输出一个具体的行动计划

执行阶段:

在这个阶段,智能体按照规划阶段生成的行动计划去逐步执行每个步骤。并在执行过程中监控和调整,确保计划的顺利执行。

优点

这种机制的特点就是规划和执行的分离,这种分离可以使每个阶段更加专注于当前任务,从而提高效率。适用于需要复杂度较高,需要提前做复杂规划的任务。

缺点

在执行过程中,可能存在不确定因素,这种方式因为是提前规划好的,所以可能不适应变化,需要频繁调整计划。

举例说明Plan-and-Executor步骤

比如,我想知道2024年周杰伦最新的演唱会是时间和地点是什么,通过Plan-and-Executor机制,会被拆解成以下步骤:

计划阶段:

1. 在搜索引擎上查找“2024年周杰伦最新演唱会时间和地点”。
2. 查看官方网站或可信的新闻网站的相关信息。
3. 汇总并记录演唱会的时间和地点。

执行阶段:

1. 在搜索引擎上查找“2024年周杰伦最新演唱会时间和地点”。
   - 结果:找到了一些相关的网页链接。
2. 查看官方网站或可信的新闻网站的相关信息。
   - 结果:在周杰伦的官方网站上找到了2024年最新演唱会的时间和地点。
3. 汇总并记录演唱会的时间和地点。
   - 结果:2024年周杰伦最新演唱会将在2024年5月20日于北京举行。

2.2、ReAct机制

ReAct机制是一种将推理(Reasoning)和行动(Action)结合在一起的实现方式,同时还引入了观察(Observation)环节,在每次执行(Action)之后,都会先观察(Observation)当前现状,然后再进行下一步的推理(Reason)。

它强调的是在感知环境变化后,立即做出反应并采取行动,而不是先制定一个详细的计划。

优点

适应性强,能够快速响应环境变化。更适合动态和不确定性高的环境。

缺点

由于没有预先规划,可能在复杂任务中效率较低,每一步都在执行:观察、推理、行动。

举例说明ReAct步骤

比如,我要知道2024年周杰伦最新的演唱会是时间和地点是什么,通过ReAct机制,会被拆解成以下步骤:

推理1:用户想知道2024年周杰伦最新的演唱会是时间和地点是什么,需要查找最新的信息。
行动1:调用Google的搜索API进行搜索。
观察1:搜索结束,搜索的结果中出现一些关于《2024年周杰伦最新的演唱会》的网页信息。

推理2:搜索出来的网页较多,大概浏览前6个网页的具体内容。
行动2:点击第一个网页,开始浏览。
观察2:浏览结束,浏览的网页内容提及到了2024年周杰伦最新的演唱会信息。

推理3:针对网页的内容进行,问题的总结。
结果:将最终的答案输出给用户。

3、代码示例

3.1、Plan-and-Executor机制

LangChain框架已经实现了Plan-and-Executor机制,三行代码即可调用:

核心代码:

# 加载计划
planner = load_chat_planner(model)
# 加载执行器
executor = load_agent_executor(model, tools, verbose=True)
# 加载代理
agent = PlanAndExecute(planner=planner, executor=executor, verbose=True)

完整代码:

from langchain_openai import ChatOpenAI
from langchain_experimental.plan_and_execute import (
    PlanAndExecute, load_agent_executor, load_chat_planner
)
from langchain.tools import BaseTool
from langchain_experimental.tools import PythonREPLTool

model = ChatOpenAI(
    model="gpt-3.5-turbo",
    openai_api_key="sk-xxxxxx",
    openai_api_base="https://api.xiaoai.plus/v1",
)

# 定义工具
class SumNumberTool(BaseTool):
    name = "数字相加计算工具"
    description = "当你被要求计算2个数字相加时,使用此工具"

    def _run(self, a, b):
        return a["title"] + b["title"]

# 加入到工具合集
tools = [SumNumberTool()]

# 加载计划
planner = load_chat_planner(model)
# 加载执行器
executor = load_agent_executor(model, tools, verbose=True)
# 加载代理
agent = PlanAndExecute(planner=planner, executor=executor, verbose=True)

agent.run("你帮我算下 3.941592623412424 + 4.3434532535353的结果")

执行过程:

执行过程见下图,从过程中,我们可以看出,Agent确实是先规划了N个steps,然后一步步执行step

3.2、ReAct机制

LangChain框架已经实现了ReAct机制,两行代码即可调用:

核心代码:

# 使用reAct的提示词
prompt = hub.pull("hwchase17/structured-chat-agent")
# 创建Agent
agent = create_structured_chat_agent(llm=model, tools=tools, prompt=prompt)

完整代码:

from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor, tool
from langchain.memory import ConversationBufferMemory
from langchain.schema import HumanMessage
from langchain.tools import BaseTool
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    model="gpt-3.5-turbo",
    openai_api_key="sk-xxxxxx",
    openai_api_base="https://api.xiaoai.plus/v1",
)

# 定义工具
class SumNumberTool(BaseTool):
    name = "数字相加计算工具"
    description = "当你被要求计算2个数字相加时,使用此工具"

    def _run(self, a, b):
        return a["title"] + b["title"]

# 加入到工具合集
tools = [SumNumberTool()]

# 使用reAct的提示词
prompt = hub.pull("hwchase17/structured-chat-agent")

# 创建Agent
agent = create_structured_chat_agent(llm=model, tools=tools, prompt=prompt)

# 创建记忆组件
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

# 创建Agent执行器
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, tools=tools, memory=memory, verbose=True, handle_parsing_errors=True
)

agent_executor.invoke({"input": "你帮我算下 3.941592623412424 + 4.3434532535353的结果"})

执行过程:

ReAct机制的执行过程,读者自行尝试。与Plan-and-Executor相比,ReAct机制少了规划steps这个环节。

4、完结

本篇主要聊了思维链、AI Agent场景下思维链的2种实现机制、代码示例,具体选择取决于应用场景和问题的复杂性。希望对你有帮助!

本篇完结!欢迎 关注、加V(yclxiao)交流、全网可搜(程序员半支烟)

原文链接:https://mp.weixin.qq.com/s/MTh0x9RYwnLNvaV_U1jOcQ

最近推出了《开发者AI加持》,一个AI应用开发专栏,旨在助力开发者在这个艰难和变革的时代多一技傍身。还有1V1技术咨询,扫清职业发展和技术道路上的障碍。早鸟价9元,加V(yclxiao)咨询。

相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
52 10
|
2月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
114 1
|
3月前
|
存储 人工智能 前端开发
AI 网关零代码解决 AI 幻觉问题
本文主要介绍了 AI Agent 的背景,概念,探讨了 AI Agent 网关插件的使用方法,效果以及实现原理。
|
4月前
|
人工智能 安全
为什么AI最终能让CIO们拥有决策权
为什么AI最终能让CIO们拥有决策权
为什么AI最终能让CIO们拥有决策权
|
3月前
|
人工智能 自然语言处理 搜索推荐
AI新纪元:ChatGPT如何重塑我们的工作与生活方式?
【9月更文挑战第1天】ChatGPT作为AI领域的新星正逐步改变着我们的工作与生活方式。它以其强大的自然语言处理能力和广泛的应用潜力为我们带来了诸多便利和机遇。然而我们也应清醒地认识到其中存在的挑战和风险。在未来的发展中我们需要不断探索和完善AI技术以实现人机和谐共生的美好愿景。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI运作的基本理论
AI已从科幻走进现实,融入日常生活,如智能手机助手、智能家居、自动驾驶等。AI的发展是一部科学史诗,从简单逻辑推理进化到深度学习。机器学习作为核心,包含监督、无监督学习及深度学习等,如卷积神经网络处理图像、递归神经网络处理序列数据。AI在医疗、金融、教育等多个领域广泛应用,如辅助诊断、市场分析、个性化教学等,同时带来就业、隐私及伦理等社会议题。随着技术进步,AI正重塑世界,需谨慎管理其影响以惠及全人类。
67 2
|
5月前
|
人工智能
人工智能|思维链
### **思维链提升大模型推理能力** #### **简介** 示例数学题显示,从直觉解答到需推理求解的转变,如同大模型处理复杂问题时,若辅以推理链提示,性能更佳。 #### **应用场景** 适用于需深度分析、非直观解答的挑战性情境。 #### **实战案例** 对比直接询问剩余苹果数量,附加推理步骤使模型准确回应:“从10个苹果减去赠予的4个,加购5个后减1个食用,最终剩余10个”。 #### **总结** 掌握思维链概念,识别其适用场合,精炼提示技巧,以优化大模型解答质量。
|
4月前
|
人工智能
生成式AI问题之定制化的增强学习定义如何解决
生成式AI问题之定制化的增强学习定义如何解决
57 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
ai的技术阶段
【6月更文挑战第22天】ai的技术阶段
162 3
|
5月前
|
SQL 人工智能 算法
AI问题之当代AI是否能建立“自我”概念
AI问题之当代AI是否能建立“自我”概念
下一篇
DataWorks