在线问诊 Python、FastAPI、Neo4j — 构建问题分类器

简介: 在线问诊 Python、FastAPI、Neo4j — 构建问题分类器

目录


将问题进行分析,和系统已有的分类进行关联

构建字典数据

将构建的知识图片字典化, 用于后面对问题的解析,下图为症状的字典,其它字典同理

构建 Trie 字典树

将建字典数据,组装集合

cur_dir = '/'.join(os.path.abspath(__file__).split('/')[:-1])
#  特征词路径
self.disease_path = os.path.join(cur_dir, '../dict/disease.txt')
self.check_path = os.path.join(cur_dir, '../dict/examine.txt')
self.drug_path = os.path.join(cur_dir, '../dict/drug.txt')
self.food_path = os.path.join(cur_dir, '../dict/food.txt')
self.symptom_path = os.path.join(cur_dir, '../dict/symptom.txt')
self.deny_path = os.path.join(cur_dir, '../dict/deny.txt')
# 加载数据
self.disease_wds = [i.strip() for i in open(self.disease_path, encoding="utf-8") if i.strip()]   # ['干眼', '右膝髌上囊及关节腔少量积液']
self.check_wds = [i.strip() for i in open(self.check_path, encoding="utf-8") if i.strip()]  # ['膝关节核磁', '视力', '砂眼', '辨色力', '角膜', '眼底']
self.drug_wds = [i.strip() for i in open(self.drug_path, encoding="utf-8") if i.strip()]
self.food_wds = [i.strip() for i in open(self.food_path, encoding="utf-8") if i.strip()]
self.symptom_wds = [i.strip() for i in open(self.symptom_path, encoding="utf-8") if i.strip()] # ['畏光','干涩','看东西有时候清楚有时候不清楚']
# 读出所有 dict 里面的字典数据,并拼接成一个大而全的 集合
# ['干眼', '右膝髌上囊及关节腔少量积液','膝关节核磁', '视力', '砂眼', '辨色力', '角膜', '眼底','畏光','干涩','看东西有时候清楚有时候不清楚']
self.region_words = set(self.disease_wds + self.check_wds + self.drug_wds + self.food_wds + self.symptom_wds)

构建 Trie 字典树

Trie字典树:https://www.cnblogs.com/vipsoft/p/17722820.html

Aho-Corasick 算法 AC自动机实现:https://www.cnblogs.com/vipsoft/p/17722761.html

# 目的是为了将来对用户提的问题,进行关键词快速提取
def build_actree(self, word_list):
    """
    构造actree,加速过滤
    :param word_list:
    :return:
    """
    actree = ahocorasick.Automaton()
    for index, word in enumerate(word_list):
        actree.add_word(word, (index, word))  # 向trie树中添加单词
    actree.make_automaton()
    return actree

按实体组装字典

# 将 ['干眼', '右膝髌上囊及关节腔少量积液','膝关节核磁', '视力', '砂眼', '辨色力', '角膜', '眼底'],进行分类,组装成不同类型的字典
def build_wdtype_dict(self):
    """
    构造词对应的类型
    :return:
    """
    wd_dict = dict()
    for wd in self.region_words:
        wd_dict[wd] = []
        if wd in self.disease_wds:
            wd_dict[wd].append('disease')
        if wd in self.check_wds:
            wd_dict[wd].append('check')
        if wd in self.drug_wds:
            wd_dict[wd].append('drug')
        if wd in self.food_wds:
            wd_dict[wd].append('food')
        if wd in self.symptom_wds:
            wd_dict[wd].append('symptom')
    return wd_dict

问题分析

通过AC算法,过滤关键词

# "请问最近看东西有时候清楚有时候不清楚是怎么回事"
def check_medical(self, question):
    """
    问句过滤
    :param question:
    :return:
    """
    region_wds = []
    for i in self.region_tree.iter(question):  # 从问题中,找出关键词
        wd = i[1][1]  # 看东西有时候清楚有时候不清楚
        region_wds.append(wd)
    stop_wds = []
    for wd1 in region_wds:
        for wd2 in region_wds:
            if wd1 in wd2 and wd1 != wd2:
                stop_wds.append(wd1)
    final_wds = [i for i in region_wds if i not in stop_wds]  # '看东西有时候清楚有时候不清楚'
    medical_dict = {i: self.wdtype_dict.get(i) for i in final_wds}  # {'看东西有时候清楚有时候不清楚': ['symptom']}
    return medical_dict

解析出问题的类型

data['args'] = medical_dict
# 若没有查到相关的外部查询信息,那么则将该疾病的描述信息返回
if question_types == [] and 'symptom' in types:
   question_types = ['symptom_disease']
# 将多个分类结果进行合并处理,组装成一个字典
data['question_types'] = question_types

输出字典

question = "请问最近看东西有时候清楚有时候不清楚是怎么回事"
# 最终输出
data = {'args': {'看东西有时候清楚有时候不清楚': ['symptom']}, 'question_types': ['symptom_disease']}
question = "干眼常用药有哪些"
# 最终输出
data = {'args': {'干眼': ['disease']}, 'question_types': ['disease_drug']}
question = "干眼哪些不能吃"
data = {'args': {'干眼': ['disease']}, 'question_types': ['disease_not_food']}

后面根据 question_types 生成 CQL语句

源代码地址:https://gitee.com/VipSoft/VipQA

目录
相关文章
|
12天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
56 2
|
20天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
7天前
|
存储 API 数据库
使用Python和Flask构建简单的RESTful API
使用Python和Flask构建简单的RESTful API
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
17天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
39 3
|
17天前
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
52 2
|
17天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
33 1
|
17天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
33 1
|
26天前
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
28 2
下一篇
无影云桌面