JUC(8)JMM

简介: 这篇文章介绍了Java内存模型(JMM),解释了volatile关键字的作用,包括确保变量的可见性、禁止指令重排但不保证操作的原子性,并探讨了单例模式的实现方式,包括饿汉式和懒汉式单例模式的示例代码。

文章目录

  • 1、JMM
  • 2、volatile
  • 3、单例模式

1、JMM

Volatile是java虚拟机提供轻量级的同步机制

  • 1、保证可见性
  • 2、不保证原子性
  • 3、禁止指令重排

什么是JMM
java内存模型,不存在的东西,概念、约定

  • 1、线程解锁前,必须把共享变量立刻刷回主存(线程将主存中的变量复制一份到线程中)
  • 2、线程加锁前,必须读取主存中的最新值到工作内存中
  • 3、加锁和读锁是同一把锁

在这里插入图片描述
两个线程同时执行,假如一个线程修改变量、另外一个线程没有及时得到,就会出错。

在这里插入图片描述
内存交互操作
  内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可在分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许例外)

  • lock (锁定):作用于主内存的变量,把一个变量标识为线程独占状态
  • unlock (解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
  • read (读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用
  • load (载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中
  • u- se (使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令
  • assign (赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中
  • store (存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用
  • write  (写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中

JMM对这八种指令的使用,制定了如下规则:

  • 不允许read和load、store和write操作之一单独出现。即使用了read必须load,使用了store必须write
  • 不允许线程丢弃他最近的assign操作,即工作变量的数据改变了之后,必须告知主存
    不允许一个线程将没有assign的数据从工作内存同步回主内存
  • 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是怼变量实施use、store操作之前,必须经过assign和load操作
  • 一个变量同一时间只有一个线程能对其进行lock。多次lock后,必须执行相同次数的unlock才能解锁
  • 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值,在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值
  • 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量
  • 对一个变量进行unlock操作之前,必须把此变量同步回主内存

举例子

package com.jmm;

import java.util.concurrent.TimeUnit;

public class JMMDemo {
    private static int num = 0;
    public static void main(String[] args) {
        new Thread(()->{//线程1对主内存的变化不知道的
            while (num == 0){

            }
        }).start();

        try {
            TimeUnit.SECONDS.sleep(2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        num =1;
        System.out.println(num);

    }
}

测试结果
在这里插入图片描述

2、volatile

保证可见性

 private volatile static int num = 0;

测试结果:程序立刻停止
在这里插入图片描述
不保证原子性

package com.jmm;

/**
 * 不保证原子性
 */
public class VolatileDemo {
    private volatile static int num = 0;

    public static void add(){
        num ++;
    }
    public static void main(String[] args) {

        for (int i = 0; i < 200; i++) {

            new Thread(()->{
                for (int j = 0; j < 1000; j++) {
                    add();
                }

            }).start();

        }

        while(Thread.activeCount() > 2){
            Thread.yield();
        }
        System.out.println(Thread.currentThread().getName()+" " +num);


    }
}

测试结果
在这里插入图片描述

如果不加lock和synchronized,怎样保证原子性
使用原子类
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
测试结果
在这里插入图片描述
指令重排
什么是指令重排:你写的程序,计算机并不是按照你写的那样去执行的

volatile可以避免指令重排

volatile是可以保持可见性,不能保证原子性,由于内存屏障,可以保证避免指令重排的现象

3、单例模式

饿汉式

package com.single;

/**
 * 饿汉式单例
 */
public class HungrySingle {

    private HungrySingle(){}

    private final static HungrySingle HUNGRY_SINGLE = new HungrySingle();

    public static HungrySingle getInstance(){
        return HUNGRY_SINGLE;
    }
}

懒汉式

package com.single;


/**
 * 懒汉式单例
 */
public class LazySingle {

    private LazySingle(){
        System.out.println(Thread.currentThread().getName()+"ok");
    }

    private volatile  static LazySingle lazySingle;

    /**
     *双重检测锁模式的  懒汉式单例 DCL懒汉式
     */
    public  static LazySingle getInstance(){
        if(lazySingle == null){
            synchronized (LazySingle.class){
                if(lazySingle == null){
                    lazySingle = new LazySingle();
                    /**
                     * 1、分配内存空间
                     * 2、执行构造方法,初始化对象
                     * 3、把这个对象指向这个空间
                     */
                }
            }
        }

        return lazySingle;
    }


    //多线程并发
    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            new Thread(()->{
                getInstance();
            }).start();

        }
    }
}
相关文章
|
5月前
|
缓存 Java 编译器
JUC 并发编程之JMM
Java内存模型是Java虚拟机(JVM)规范中定义的一组规则,用于屏蔽各种硬件和操作系统的内存访问差异,保证多线程情况下程序的正确执行。Java内存模型规定了线程之间如何交互以及线程和内存之间的关系。它主要解决的问题是可见性、原子性和有序性。
|
5月前
|
Java 程序员 开发者
深入理解Java并发编程:线程同步与锁机制
【4月更文挑战第30天】 在多线程的世界中,确保数据的一致性和线程间的有效通信是至关重要的。本文将深入探讨Java并发编程中的核心概念——线程同步与锁机制。我们将从基本的synchronized关键字开始,逐步过渡到更复杂的ReentrantLock类,并探讨它们如何帮助我们在多线程环境中保持数据完整性和避免常见的并发问题。文章还将通过示例代码,展示这些同步工具在实际开发中的应用,帮助读者构建对Java并发编程深层次的理解。
|
5月前
|
安全 Java
JUC并发编程之原子类
并发编程是现代计算机应用中不可或缺的一部分,而在并发编程中,处理共享资源的并发访问是一个重要的问题。为了避免多线程访问共享资源时出现竞态条件(Race Condition)等问题,Java提供了一组原子类(Atomic Classes)来支持线程安全的操作。
|
5月前
|
缓存 安全 Java
JUC并发编程之volatile详解
Java内存模型是Java虚拟机(JVM)规范中定义的一组规则,用于屏蔽各种硬件和操作系统的内存访问差异,保证多线程情况下程序的正确执行。Java内存模型规定了线程之间如何交互以及线程和内存之间的关系。它主要解决的问题是可见性、原子性和有序性。
|
12月前
|
存储 缓存 安全
JUC第二讲:Java并发理论基础:Java内存模型(JMM)与线程
JUC第二讲:Java并发理论基础:Java内存模型(JMM)与线程
105 0
|
缓存 安全 Java
【Java并发编程 二】JMM内存模型(三)
【Java并发编程 二】JMM内存模型
99 0
|
存储 缓存 安全
【Java并发编程 二】JMM内存模型(一)
【Java并发编程 二】JMM内存模型(一)
220 0
【并发编程】原子类
【并发编程】原子类
|
缓存 Java 程序员
juc并发编程02——JMM模型(下)
我们在这篇文章中将介绍JMM模型,也就是java内存模型。注意,本文所提到的JMM模型与JVM内存模型属于不同层次的内容。JVM内存模型讲的是物理内存空间的分配,而JMM则强调对于JVM内存模型的抽象。
juc并发编程02——JMM模型(下)
|
缓存 Java 编译器
juc并发编程02——JMM模型(上)
我们在这篇文章中将介绍JMM模型,也就是java内存模型。注意,本文所提到的JMM模型与JVM内存模型属于不同层次的内容。JVM内存模型讲的是物理内存空间的分配,而JMM则强调对于JVM内存模型的抽象。
juc并发编程02——JMM模型(上)