自然语言处理 Paddle NLP - 文本翻译技术及应用-理论

本文涉及的产品
文本翻译,文本翻译 100万字符
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 自然语言处理 Paddle NLP - 文本翻译技术及应用-理论
  • 什么是机器翻译
  • 机器翻译质量的自动评价
  • 从统计机器翻译到神经网络机器翻译
  • 多语言/多领域/多模态的翻译应用
  • 神经网络机器翻译面临的挑战

视频:https://aistudio.baidu.com/aistudio/course/introduce/24177?sharedLesson=1480611&sharedType=2&sharedUserId=2631487&ts=1687143971537

课件:https://aistudio.baidu.com/aistudio/course/introduce/24177?sharedLesson=1718790&sharedType=2&sharedUserId=2631487&ts=1687143985192

什么是机器翻译

译事三难

信:忠实于原文,忠实度/充分性/准确性

达:译文流利通畅,流利度/流畅性

雅:文学性

机器翻译发展历程

三架马车: 数据、算力、算法

机器翻译的自动评价

机器翻译基本原理--从统计机器翻译到神经网络翻译

神经网络机器翻译:基本原理

SelfAttention计算示例

注意力=向量相似度

多语言&多领域&多模态翻译

文本翻译:自动写诗

文本翻译:智能春联

神经网络机器翻译面临的挑战

面临挑战:融合知识

目录
相关文章
|
2月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
77 17
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
随着人工智能技术的不断发展,自然语言处理(NLP)已经成为了一个重要的应用领域。本文将介绍一些常见的NLP任务和算法,并通过代码示例来展示如何实现这些任务。我们将讨论文本分类、情感分析、命名实体识别等常见任务,并使用Python和相关库来实现这些任务。最后,我们将探讨NLP在未来的发展趋势和挑战。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
本文旨在揭示人工智能技术如何革新自然语言处理领域。我们将从基础的文本分析到复杂的情感识别,逐步深入探讨AI如何提升语言理解的准确性和效率。文章将通过实际代码示例,展示AI技术在自然语言处理中的应用,并讨论其对日常生活的潜在影响。读者将获得关于AI技术在理解和生成自然语言方面的实用知识,以及如何将这些技术应用于解决现实世界问题的见解。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(Natural Language Processing,简称NLP)
自然语言处理(NLP)是人工智能的分支,旨在让计算机理解、解释和生成人类语言。NLP的关键技术和应用包括语言模型、词嵌入、文本分类、命名实体识别、机器翻译、文本摘要、问答系统、情感分析、对话系统、文本生成和知识图谱等。随着深度学习的发展,NLP的应用日益广泛且效果不断提升。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索深度学习中的Transformer模型及其在自然语言处理中的应用
探索深度学习中的Transformer模型及其在自然语言处理中的应用
65 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
94 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
118 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。

热门文章

最新文章