OCR -- 文本检测 - 训练DB文字检测模型

简介: OCR -- 文本检测 - 训练DB文字检测模型

PaddleOCR提供DB文本检测算法,支持MobileNetV3、ResNet50_vd两种骨干网络,可以根据需要选择相应的配置文件,启动训练。

本节以icdar15数据集、MobileNetV3作为骨干网络的DB检测模型(即超轻量模型使用的配置)为例,介绍如何完成PaddleOCR中文字检测模型的训练、评估与测试。

3.1 数据准备

本次实验选取了场景文本检测和识别(Scene Text Detection and Recognition)任务最知名和常用的数据集ICDAR2015。icdar2015数据集的示意图如下图所示:

图 icdar2015数据集示意图



该项目中已经下载了icdar2015数据集,存放在 /home/aistudio/data/data96799 中,可以运行如下指令完成数据集解压,或者从链接中自行下载

~/train_data/icdar2015/text_localization 
  └─ icdar_c4_train_imgs/         icdar数据集的训练数据
  └─ ch4_test_images/             icdar数据集的测试数据
  └─ train_icdar2015_label.txt    icdar数据集的训练标注
  └─ test_icdar2015_label.txt     icdar数据集的测试标注

提供的标注文件格式为:

" 图像文件名                    json.dumps编码的图像标注信息"
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}]

json.dumps编码前的图像标注信息是包含多个字典的list,字典中的points表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。 transcription中的字段表示当前文本框的文字,在文本检测任务中并不需要这个信息。 如果您想在其他数据集上训练PaddleOCR,可以按照上述形式构建标注文件。

如果"transcription"字段的文字为'*'或者'###',表示对应的标注可以被忽略掉,因此,如果没有文字标签,可以将transcription字段设置为空字符串。

3.2 数据预处理

训练时对输入图片的格式、大小有一定的要求,同时,还需要根据标注信息获取阈值图以及概率图的真实标签。所以,在数据输入模型前,需要对数据进行预处理操作,使得图片和标签满足网络训练和预测的需要。另外,为了扩大训练数据集、抑制过拟合,提升模型的泛化能力,还需要使用了几种基础的数据增广方法。

本实验的数据预处理共包括如下方法:

  • 图像解码:将图像转为Numpy格式;
  • 标签解码:解析txt文件中的标签信息,并按统一格式进行保存;
  • 基础数据增广:包括:随机水平翻转、随机旋转,随机缩放,随机裁剪等;
  • 获取阈值图标签:使用扩张的方式获取算法训练需要的阈值图标签;
  • 获取概率图标签:使用收缩的方式获取算法训练需要的概率图标签;
  • 归一化:通过规范化手段,把神经网络每层中任意神经元的输入值分布改变成均值为0,方差为1的标准正太分布,使得最优解的寻优过程明显会变得平缓,训练过程更容易收敛;
  • 通道变换:图像的数据格式为[H, W, C](即高度、宽度和通道数),而神经网络使用的训练数据的格式为[C, H, W],因此需要对图像数据重新排列,例如[224, 224, 3]变为[3, 224, 224];

图像解码

从训练数据的标注中读取图像,演示DecodeImage类的使用方式。

源码位置:\ppocr\data\imaug\operators.py

import os
import matplotlib.pyplot as plt
from paddleocr.ppocr.data.imaug.operators import DecodeImage
 
label_path = "../train_data/icdar2015/text_localization/train_icdar2015_label.txt"
img_dir = "../train_data/icdar2015/text_localization/"
# 1. 读取训练标签的第一条数据
f = open(label_path, "r")
lines = f.readlines()
# 2. 取第一条数据
line = lines[0]
print("The first data in train_icdar2015_label.txt is as follows.\n", line)
img_name, gt_label = line.strip().split("\t")
# 3. 读取图像
image = open(os.path.join(img_dir, img_name), 'rb').read()
data = {'image': image, 'label': gt_label}
# 4. 声明DecodeImage类,解码图像
decode_image = DecodeImage(img_mode='RGB', channel_first=False)
data = decode_image(data)
# 5. 打印解码后图像的shape,并可视化图像
print("The shape of decoded image is ", data['image'].shape)
plt.figure(figsize=(10, 10))
plt.imshow(data['image'])
src_img = data['image']
plt.show()

标签解码

解析txt文件中的标签信息,并按统一格式进行保存;

源码位置:ppocr/data/imaug/label_ops.py

import os
from paddleocr.ppocr.data.imaug.label_ops  import DetLabelEncode
label_path = "../train_data/icdar2015/text_localization/train_icdar2015_label.txt"
img_dir = "../train_data/icdar2015/text_localization/"
# 1. 读取训练标签的第一条数据
f = open(label_path, "r")
lines = f.readlines()
# 2. 取第一条数据
line = lines[0]
print("The first data in train_icdar2015_label.txt is as follows.\n", line)
img_name, gt_label = line.strip().split("\t")
# 3. 读取图像
image = open(os.path.join(img_dir, img_name), 'rb').read()
data = {'image': image, 'label': gt_label}
# 1. 声明标签解码的类
decode_label = DetLabelEncode()
# 2. 打印解码前的标签
print("The label before decode are: ", data['label'])
data = decode_label(data)
print("\n")
# 4. 打印解码后的标签
print("The polygon after decode are: ", data['polys'])
print("The text after decode are: ", data['texts'])

基础数据增广

数据增广是提高模型训练精度,增加模型泛化性的常用方法,文本检测常用的数据增广包括随机水平翻转、随机旋转、随机缩放以及随机裁剪等等。

随机水平翻转、随机旋转、随机缩放的代码实现参考代码。随机裁剪的数据增广代码实现参考代码

获取阈值图标签

使用扩张的方式获取算法训练需要的阈值图标签;

源码位置:ppocr/data/imaug/make_border_map.py

# 从PaddleOCR中import MakeBorderMap
from ppocr.data.imaug.make_border_map import MakeBorderMap
# 1. 声明MakeBorderMap函数
generate_text_border = MakeBorderMap()
# 2. 根据解码后的输入数据计算bordermap信息
data = generate_text_border(data)
# 3. 阈值图可视化
plt.figure(figsize=(10, 10))
plt.imshow(src_img)
text_border_map = data['threshold_map']
plt.figure(figsize=(10, 10))
plt.imshow(text_border_map)
目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 文字识别
Kimi 上线视觉思考模型,K1 系列强化学习模型正式开放,无需借助外部 OCR 处理图像与文本进行思考并回答
k1视觉思考模型是kimi推出的k1系列强化学习AI模型,具备端到端图像理解和思维链技术,能够在数学、物理、化学等领域表现优异。本文详细介绍了k1视觉思考模型的功能、技术原理、使用方法及其在多个应用场景中的表现。
168 68
Kimi 上线视觉思考模型,K1 系列强化学习模型正式开放,无需借助外部 OCR 处理图像与文本进行思考并回答
|
3天前
|
人工智能 文字识别 自然语言处理
Vision Parse:开源的 PDF 转 Markdown 工具,结合视觉语言模型和 OCR,识别文本和表格并保持原格式
Vision Parse 是一款开源的 PDF 转 Markdown 工具,基于视觉语言模型,能够智能识别和提取 PDF 中的文本和表格,并保持原有格式和结构。
44 19
Vision Parse:开源的 PDF 转 Markdown 工具,结合视觉语言模型和 OCR,识别文本和表格并保持原格式
|
4月前
|
编解码 人工智能 文字识别
阶跃星辰开源GOT-OCR2.0:统一端到端模型,魔搭一站式推理微调最佳实践来啦!
GOT来促进OCR-2.0的到来。该模型具有580百万参数,是一个统一、优雅和端到端的模型,由高压缩编码器和长上下文解码器组成。
阶跃星辰开源GOT-OCR2.0:统一端到端模型,魔搭一站式推理微调最佳实践来啦!
|
5月前
|
文字识别 并行计算 PyTorch
MiniCPM-V 系列模型在多模态文档 RAG 中的应用(无需OCR的多模态文档检索+生成)
现在我们以 OpenBMB 基于 MiniCPM-V-2.0 训练的端到端多模态检索模型 MiniCPM-Visual-Embedding-v0 为例,实现无需OCR的多模态文档检索与问答。
MiniCPM-V 系列模型在多模态文档 RAG 中的应用(无需OCR的多模态文档检索+生成)
|
5月前
|
机器学习/深度学习 文字识别 前端开发
基于 Spring Boot 3.3 + OCR 实现图片转文字功能
【8月更文挑战第30天】在当今数字化信息时代,图像中的文字信息越来越重要。无论是文档扫描、名片识别,还是车辆牌照识别,OCR(Optical Character Recognition,光学字符识别)技术都发挥着关键作用。本文将围绕如何使用Spring Boot 3.3结合OCR技术,实现图片转文字的功能,分享工作学习中的技术干货。
263 2
|
5月前
|
机器学习/深度学习 人工智能 文字识别
轻松识别文字,这款Python OCR库支持超过80种语言
轻松识别文字,这款Python OCR库支持超过80种语言
284 2
|
5月前
|
机器学习/深度学习 存储 文字识别
OCR -- 文本识别 -- 实践篇
OCR -- 文本识别 -- 实践篇
71 1
|
6月前
|
文字识别 数据可视化 数据处理
印刷文字识别使用问题之已经训练的数据集是否可以删除
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
6月前
|
人工智能 文字识别 开发工具
印刷文字识别使用问题之是否支持识别并返回文字在图片中的位置信息
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
5月前
|
机器学习/深度学习 文字识别 自然语言处理
OCR -- 文本识别 -- 理论篇
OCR -- 文本识别 -- 理论篇
91 0

热门文章

最新文章