百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - Docker)

简介: 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - Docker)

目录

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 Paddle Inference 模型推理(离线部署)

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - CentOS)

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - Docker)推荐

查看版本 没找到本文安装的版本,可以跳过此步骤

https://hub.docker.com/r/paddlepaddle/paddle/tags/?page=1&name=cpu

安装

虚机配置:CentOS 7 、 内存:12G、CPU:4核

镜像中集成好了 Python 3.7.12 比较方便

Docker 安装

# 切换进 opt/ppocr 目录,后面 $PWD 挂载时会用到当前的路径
[root@localhost ~]# cd /opt/ppocr/
[root@localhost ppocr]# pwd
/opt/ppocr
[root@localhost ppocr]# 
# 获取镜像 -- 没有GPU环境,使用CPU跑了玩玩
[root@localhost ppocr]# docker pull registry.baidubce.com/paddlepaddle/paddle:2.2.2
# 创建一个名字为ppocr的docker容器,并将当前目录映射到容器的/paddle目录下
[root@localhost ppocr]# docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.2.2 /bin/bash
# --name ppocr:设定 Docker 的名称,ppocr 是自己设置的名称;
# -it:参数说明容器已和本机交互式运行;
# -v $PWD:/paddle:指定将当前路径(PWD 变量会展开为当前路径的绝对路径--Linux宿主机的路径,所以执行命令的路径要选好)挂载到容器内部的 /paddle 目录;(相当于 /opt/ppocr 挂载到容器内)
# registry.baidubce.com/paddlepaddle/paddle:2.2.2:指定需要使用的 image 名称,您可以通过docker images命令查看;/bin/bash 是在 Docker 中要执行的命令
# ctrl+P+Q可退出docker 容器,重新进入docker 容器使用如下命令
[root@localhost ppocr]# docker exec -it ppocr /bin/bash
λ localhost /home

[root@localhost 开头的都是在Linux 服务器上执行

以下命令都是在容器中执行,防止混淆,下面命令省掉了 λ localhost /home

PaddleOCR 安装

# 升级 pip 
pip install -U pip
# 容器中已经包含了 paddlepaddle 2.2.2
pip list
# 拉取 PaddleOCR 代码
git clone https://gitee.com/paddlepaddle/PaddleOCR.git
# 切换进入 PaddleOCR 目录
cd PaddleOCR
# 安装运行所需要的whl包
pip install -r requirements.txt -i https://mirror.baidu.com/pypi/simple

准备PaddleServing的运行环境,

# 安装serving,用于启动服务
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl
pip install paddle_serving_server-0.8.3-py3-none-any.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装client,用于向服务发送请求
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
pip install paddle_serving_client-0.8.3-cp37-none-any.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip install paddle_serving_app-0.8.3-py3-none-any.whl -i https://pypi.tuna.tsinghua.edu.cn/simple

模型转换

首先,下载PP-OCR的inference模型

cd deploy/pdserving/ 
# 下载并解压 OCR 文本检测模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar -O ch_PP-OCRv3_det_infer.tar && tar -xf ch_PP-OCRv3_det_infer.tar
# 下载并解压 OCR 文本识别模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar -O ch_PP-OCRv3_rec_infer.tar &&  tar -xf ch_PP-OCRv3_rec_infer.tar
# 用安装的paddle_serving_client把下载的inference模型转换成易于server部署的模型格式。
# 转换检测模型
python -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_det_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_v3_serving/ \
                                         --serving_client ./ppocr_det_v3_client/
# 转换识别模型
python -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_rec_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_v3_serving/  \
                                         --serving_client ./ppocr_rec_v3_client/
# 查看文件夹
ll ppocr_det_v3_client ppocr_det_v3_serving ppocr_rec_v3_serving ppocr_rec_v3_client

Paddle Serving pipeline部署

启动服务,测试时使用,窗口关闭服务停止
python web_service.py --config=config.yml
# 启动服务(后台运行),运行日志保存在log.txt
nohup python web_service.py --config=config.yml &>log.txt &
tail -f ./log.txt

重启

# 如果容器停止,重启容器
[root@localhost ppocr]# docker restart ppocr
# 进入容器
[root@localhost ppocr]# docker exec -it ppocr /bin/bash
# 切换目录
cd PaddleOCR/deploy/pdserving/
# 启动服务
python web_service.py --config=config.yml
# nohup python web_service.py --config=config.yml &>log.txt &

测试

Python 读取图片 转 base64 并生成 JSON

import json
import base64
img_path = r'D:\OpenSource\PaddleOCR-release-2.6\doc\imgs\00006737.jpg';
with open(img_path, 'rb') as file:
    image_data1 = file.read()
image = base64.b64encode(image_data1).decode('utf8')
data = {"key": ["image"], "value": [image]}
# 转成 json 字符串
json_str = json.dumps(data)
print(json_str)

格式如下:

{"key": ["image"], "value": ["image base64"]}

将生成的 json - 图片base64,复制到 Postman 中执行如下

参考 :

https://www.paddlepaddle.org.cn/documentation/docs/zh/install/docker/linux-docker.html

https://www.paddlepaddle.org.cn/tutorials/projectdetail/3946013

https://gitee.com/paddlepaddle/PaddleOCR/blob/release/2.6/doc/doc_ch/installation.md

https://gitee.com/paddlepaddle/PaddleOCR/blob/release/2.6/deploy/pdserving/README_CN.md

目录
相关文章
|
6天前
|
人工智能 API 数据安全/隐私保护
使用 Docker 一键免费部署 63.8k 的私人 ChatGPT 网页应用
NextChat 是一个可以在 GitHub 上一键免费部署的私人 ChatGPT 网页应用,支持 GPT3、GPT4 和 Gemini Pro 模型。该项目在 GitHub 上获得了 63.8k 的 star 数。部署简单,只需拉取 Docker 镜像并运行容器,设置 API Key 后即可使用。此外,NextChat 还提供了预设角色的面具功能,方便用户快速创建对话。
54 22
使用 Docker 一键免费部署 63.8k 的私人 ChatGPT 网页应用
|
17天前
|
SQL 关系型数据库 数据库
国产数据实战之docker部署MyWebSQL数据库管理工具
【10月更文挑战第23天】国产数据实战之docker部署MyWebSQL数据库管理工具
56 4
国产数据实战之docker部署MyWebSQL数据库管理工具
|
7天前
|
运维 开发者 Docker
Docker Compose:简化容器化应用的部署与管理
Docker Compose:简化容器化应用的部署与管理
|
7天前
|
Docker 微服务 容器
使用Docker Compose实现微服务架构的快速部署
使用Docker Compose实现微服务架构的快速部署
17 1
|
11天前
|
存储 Linux Docker
centos系统清理docker日志文件
通过以上方法,可以有效清理和管理CentOS系统中的Docker日志文件,防止日志文件占用过多磁盘空间。选择合适的方法取决于具体的应用场景和需求,可以结合手动清理、logrotate和调整日志驱动等多种方式,确保系统的高效运行。
12 2
|
19天前
|
消息中间件 Linux RocketMQ
在Red Hat Enterprise Linux 9上使用Docker快速安装并部署
通过以上步骤,你可以在Red Hat Enterprise Linux 9上使用Docker快速安装并部署RocketMQ。这种方法不仅简化了安装过程,还提供了一个灵活的环境来管理和扩展消息队列系统。RocketMQ作为一款高性能的分布式消息系统,通过Docker可以实现快速部署和高效管理。
46 2
|
20天前
|
消息中间件 Linux RocketMQ
在Red Hat Enterprise Linux 9上使用Docker快速安装并部署
通过以上步骤,你可以在Red Hat Enterprise Linux 9上使用Docker快速安装并部署RocketMQ。这种方法不仅简化了安装过程,还提供了一个灵活的环境来管理和扩展消息队列系统。RocketMQ作为一款高性能的分布式消息系统,通过Docker可以实现快速部署和高效管理。
29 3
|
23天前
|
关系型数据库 MySQL Linux
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
191 2
|
24天前
|
弹性计算 数据库连接 Nacos
阿里云ECS服务器在docker中部署nacos
docker pull nacos 失败,docker部署nacos遇到的问题,nacos数据库连接,nacos端口映射
91 1
|
7天前
|
前端开发 开发者 Docker
深入探索Docker Compose:简化多容器应用的部署
深入探索Docker Compose:简化多容器应用的部署
27 0

热门文章

最新文章