什么是 Spark DAG?

简介: 【8月更文挑战第14天】

1. 概述

在分布式计算框架 Apache Spark 中,DAG(Directed Acyclic Graph,有向无环图)是核心概念之一。它是 Spark 在执行数据处理任务时,用来表示任务执行顺序和依赖关系的抽象数据结构。理解 Spark DAG 是深入理解 Spark 执行机制的关键,因为它决定了任务的调度和执行方式。

2. DAG 的基本概念

DAG 是一种图结构,由顶点(vertices)和有向边(edges)组成。在 DAG 中,所有的边都有方向,并且不会形成闭环,即不会有一个顶点能通过一条或多条边回到自身。正是由于这一特性,DAG 特别适合用于描述计算任务的依赖关系。

在 Spark 中,DAG 是由一系列的 RDD(Resilient Distributed Dataset,弹性分布式数据集)操作构成的。当用户在 Spark 中编写代码时,这些操作会被转换为 DAG,这个 DAG 描述了任务从数据读取到最终结果输出的整个过程。

3. Spark DAG 的生成

当用户在 Spark 应用程序中执行一系列的转换(transformations)和行动(actions)操作时,Spark 不会立即执行这些操作,而是会将它们记录下来,生成一个 DAG。这个 DAG 由 RDD 的转换操作和行动操作构成,描述了数据如何从一个 RDD 流向另一个 RDD,并最终生成结果。

  • 转换操作(Transformations): 这些操作包括 mapfilterflatMapgroupByKey 等,它们会创建新的 RDD 并将数据流从一个 RDD 传递到另一个 RDD。转换操作是惰性求值的,即它们不会立即执行,而是等待某个行动操作触发执行。

  • 行动操作(Actions): 这些操作包括 collectcountsaveAsTextFile 等,它们会触发实际的计算过程,并生成最终的结果。当行动操作被调用时,Spark 会根据之前记录的转换操作生成一个完整的 DAG。

4. Spark DAG 的执行

当一个 Spark 应用程序被提交并执行时,Spark 会将生成的 DAG 切分成多个阶段(stages),并进一步拆分为更小的任务(tasks),这些任务可以并行执行。

4.1 DAG 的分解
  • 阶段(Stage): DAG 会根据窄依赖和宽依赖的不同进行分解。窄依赖意味着一个父 RDD 的每个分区都仅被一个子 RDD 的分区所依赖,而宽依赖则意味着一个父 RDD 的分区可能被多个子 RDD 的分区依赖。宽依赖通常会导致 shuffle 操作。每个阶段包含一组不需要 shuffle 的转换操作。

  • 任务(Tasks): 每个阶段都会被拆分为多个任务,这些任务可以并行执行。每个任务处理一个 RDD 的单个分区,并且可以在集群中的不同节点上运行。

4.2 任务的调度与执行

Spark 使用集群管理器(如 YARN、Mesos 或者 Spark 自带的 Standalone 模式)来调度任务。每个任务会被分发到集群中的计算节点(Executor)上执行。Spark Driver 负责管理 DAG 的执行,监控任务的进度,并在任务失败时进行重试或重新调度。

5. DAG 在 Spark 性能优化中的作用

由于 DAG 描述了数据操作的依赖关系和执行顺序,理解和优化 DAG 是提升 Spark 应用程序性能的关键步骤。以下是一些常见的优化策略:

  • 减少宽依赖: 宽依赖通常会引发 shuffle 操作,导致性能下降。通过优化代码结构,减少不必要的宽依赖,可以有效提高任务执行效率。

  • 持久化中间结果: 对于某些关键的中间 RDD 结果,可以选择持久化操作(如 persistcache),以避免重复计算和不必要的数据传输。

  • 任务并行度调整: 通过调整任务的并行度,可以更好地利用集群资源,提高任务执行的速度。

6. 结论

Spark DAG 是 Spark 框架中的一个核心概念,用于描述和管理数据操作的执行过程。它由一系列 RDD 的转换操作和行动操作构成,定义了任务的依赖关系和执行顺序。理解和优化 DAG 是提升 Spark 应用程序性能的关键,这需要开发者在编写代码时,注意数据操作的依赖关系,减少宽依赖,并充分利用 Spark 的优化机制。通过合理使用 DAG,Spark 能够高效地执行分布式计算任务,实现对大规模数据的快速处理。

目录
相关文章
|
分布式计算 大数据 Spark
Spark 宽窄依赖、DAG 的切割_2 | 学习笔记
快速学习 Spark 宽窄依赖、DAG 的切割_2
130 0
 Spark  宽窄依赖、DAG  的切割_2 | 学习笔记
|
分布式计算 大数据 Spark
 Spark 宽窄依赖、DAG 的切割_1 | 学习笔记
快速学习  Spark 宽窄依赖、DAG 的切割_1
180 0
  Spark  宽窄依赖、DAG  的切割_1 | 学习笔记
|
分布式计算 大数据 Spark
Spark DAG源码剖析_2 | 学习笔记
快速学习Spark DAG源码剖析_2
111 0
|
分布式计算 调度 Spark
Spark DAG调度器事件循环处理器
Spark DAG调度器事件循环处理器 更多资源 github: https://github.com/opensourceteams/spark-scala-maven csdn(汇总视频在线看): https://blog.
1653 0
|
2月前
|
机器学习/深度学习 分布式计算 算法
Spark快速大数据分析PDF下载读书分享推荐
《Spark快速大数据分析》适合初学者,聚焦Spark实用技巧,同时深入核心概念。作者团队来自Databricks,书中详述Spark 3.0新特性,结合机器学习展示大数据分析。Spark是大数据分析的首选工具,本书助你驾驭这一利器。[PDF下载链接][1]。 ![Spark Book Cover][2] [1]: https://zhangfeidezhu.com/?p=345 [2]: https://i-blog.csdnimg.cn/direct/6b851489ad1944548602766ea9d62136.png#pic_center
110 1
Spark快速大数据分析PDF下载读书分享推荐
|
1月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
124 3
|
13天前
|
机器学习/深度学习 分布式计算 大数据
Spark 适合解决多种类型的大数据处理问题
【9月更文挑战第1天】Spark 适合解决多种类型的大数据处理问题
29 3
|
17天前
|
分布式计算 大数据 Apache
跨越界限:当.NET遇上Apache Spark,大数据世界的新篇章如何谱写?
【8月更文挑战第28天】随着信息时代的发展,大数据已成为推动企业决策、科研与技术创新的关键力量。Apache Spark凭借其卓越的分布式计算能力和多功能数据处理特性,在大数据领域占据重要地位。然而,对于.NET开发者而言,如何在Spark生态中发挥自身优势成为一个新课题。为此,微软与Apache Spark社区共同推出了.NET for Apache Spark,使开发者能用C#、F#等语言编写Spark应用,不仅保留了Spark的强大功能,还融合了.NET的强类型系统、丰富库支持及良好跨平台能力,极大地降低了学习门槛并拓展了.NET的应用范围。
35 3
|
22天前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。