GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化

简介: Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。今天给小伙伴们分享的这份Python数据分析入门手册本着实用性的目的,着眼于整个数据分析的流程,介绍了从数据采集到可视化的大致流程。

Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。


今天给小伙伴们分享的这份Python数据分析入门手册本着实用性的目的,着眼于整个数据分析的流程,介绍了从数据采集到可视化的大致流程。



内容涵盖数据的获取(即网络爬虫程序的设计)、前期数据的清洗和处理、运用机器学习算法进行建模分析,以及使用可视化的方法展示数据及结果。希望借此为Python初学者打开数据分析领域的大门,初窥数据分析的奥秘。


限于文章篇幅原因,只能以截图的形式展示出来,有需要的小伙伴可以  点击这里获取!

第1章 准备

第1章主要讲解了Python集成开发环境的搭建。考虑到初学者容易为安装第三方库犯难,又介绍了三种简单实用的方法来安装这些常见的库。接着对几个后面要用到的高级语法进行了简单介绍,为之后的应用打下基础。


第2章 数据的获取

第2章集中讲解了数据采集的流程,即网络爬虫程序的设计与实现。没有拘泥于使用Python的内置库 urllib 库进行实现,而是直接介绍了requests和其他更加简洁强大的库来完成程序的设计。在进阶内容中,对常见的编码问题、异常处理、代理P、验证码、机器人协议、模拟登录,以及多线程等相关问题给出了解决的方案。


第3章 数据的存取与清洗

第3章讲解数据的清洗问题。在具体讲解清洗数据之前,先介绍了TXT、XLSX、JSON、CSV等各种文件的导入和导出的方法,并介绍了Python与MySOL数据库交互的方式。接着介绍了NumPy和pandas库的基本使用方法,这是我们用于数据处理和科学计算的两个强大的工具。最后综合以上的学习介绍了数据的去重、缺失值的填补等经典的数据清洗方法。


第4章 数据的分析及可视化

第4章首先讲解探索性数据分析的应用,并且简单介绍了机器学习基本知识。然后演示如何应用 sklearn 库提供的决策树和最邻近算法来处理分类问题,并尝试根据算法原理手动实现最邻近算法。最后介绍如何使用 pandas、matplotlib 和seaborn这三个库来实现数据的可视化。


第5章 Python与生活

第5章是综合性学习的章节,讲解了三个小项目的完整实现过程旨在通过操作生活中真正的数据来强化前面基础内容的学习。



限于文章篇幅原因,就展示到这里了,有需要的小伙伴可以  点击这里获取!

相关文章
|
9天前
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
在 Python 编程中,掌握图的深度优先遍历(DFS)和广度优先遍历(BFS)是进阶的关键。这两种算法不仅理论重要,还能解决实际问题。本文介绍了图的基本概念、邻接表表示方法,并给出了 DFS 和 BFS 的 Python 实现代码示例,帮助读者深入理解并应用这些算法。
20 2
|
1月前
|
数据可视化 数据挖掘 大数据
Python 数据分析入门:从零开始处理数据集
Python 数据分析入门:从零开始处理数据集
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析:从入门到实践
使用Python进行数据分析:从入门到实践
47 2
|
21天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【9月更文挑战第33天】本文旨在为初学者提供一个关于使用Python进行数据分析的全面概述。我们将从基本的安装和设置开始,逐步介绍数据处理、数据可视化以及机器学习的基本概念和应用。文章将通过实际代码示例来展示如何使用Python及其相关库来解决常见的数据分析问题。
|
30天前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
32 0
|
2月前
|
API 开发者 Python
Python高手修炼手册:精通文件系统操作,掌控I/O管理,提升编程效率
在Python编程中,从初学者成长为高手,关键在于深入理解底层细节并熟练运用高效工具。本文通过对比分析,探讨如何从基础出发,逐步精通文件系统操作与I/O管理,显著提升编程效率。文件系统操作方面,pathlib模块相较于传统的os和os.path模块更为直观易用;在I/O管理上,异步I/O相比同步I/O能大幅提升程序的并发能力和响应速度。通过这些技巧,开发者不仅能优化代码结构,还能预见并解决潜在性能问题,实现从细节到全局的全面提升。
26 3
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python中的简单数据分析:入门指南
【10月更文挑战第2天】Python中的简单数据分析:入门指南
33 0
|
1月前
|
存储 IDE 开发工具
编写Python参考手册速查软件(一)
编写Python参考手册速查软件(一)
|
1月前
|
Python
编写Python参考手册速查软件(二)
编写Python参考手册速查软件(二)