大数据 - DWD&DIM 业务数据

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
实时计算 Flink 版,5000CU*H 3个月
简介: 大数据 - DWD&DIM 业务数据

业务数据的变化,我们可以通过 FlinkCDC 采集到,但是 FlinkCDC 是把全部数据统一写入一个 Topic 中, 这些数据包括事实数据,也包含维度数据,这样显然不利于日后的数据处理,所以这个功能是从 Kafka 的业务数据 ODS 层读取数据,经过处理后,将维度数据保存到 HBase,将事实数据写回 Kafka 作为业务数据的 DWD 层

实现动态分流功能

由于 FlinkCDC 是把全部数据统一写入一个 Topic 中, 这样显然不利于日后的数据处理。所以需要把各个表拆开处理。但是由于每个表有不同的特点,有些表是维度表,有些表是事实表。

在实时计算中一般把维度数据写入存储容器,一般是方便通过主键查询的数据库比如HBase,Redis,MySQL 等。一般把事实数据写入流中,进行进一步处理,最终形成宽表。

维度数据不放 Redis 的原因:User 用户维度数据量很大,其它维度还行。

为什么不放 MySQL: 并发压力大

这样的配置不适合写在配置文件中,因为这样的话,业务端随着需求变化每增加一张表,就要修改配置重启计算程序。所以这里需要一种动态配置方案,把这种配置长期保存起来,一旦配置有变化,实时计算可以自动感知。

这种可以有两个方案实现

  • 一种是用 Zookeeper 存储,通过 Watch 感知数据变化;
  • 另一种是用 mysql 数据库存储,周期性的同步;(有配置表,指定哪些表的数据发给哪些主题)
  • 另一种是用 mysql 数据库存储,使用广播流。
    这里选择第二种方案,主要是 MySQL 对于配置数据初始化和维护管理,使用 FlinkCDC 读取配置信息表,将配置流作为广播流与主流进行连接。

  • 获取执行环境
  • 消费Kafka ods_base_db 主题数据创建流
  • 将每行数据转换为JSON对象并过滤(delete) 主流
  • 使用FlinkCDC消费配置表并处理成 广播流
  • 连接主流和广播流
  • 分流 处理数据 广播流数据,主流数据(根据广播流数据进行处理)
  • 提取Kafka流数据和HBase流数据
  • 将Kafka数据写入Kafka主题,将HBase数据写入Phoenix表
  • 启动任务

table_process

table_process 主健:sourceTable + type
sourceTable 根据表名分流
type 用来区分新增、变更的数据,不同类型的数据放到不同主题表不
sinkType 放Kafka还是其它地方
sinkTable 如果是维度表,就是Phoenix表名,如果是 kafka 就是 主题
sinkColumns 提供字段,为了自动建表
pk Phoenix 建表必须有主健
extend 指定要不要做分区表,等等

Demo

sourceTable type sinkType sinkTable
base_trademark insert hbase dim_xxx(Phoenix 表名)
order_info insert kafka dwd_xxx(主题名)
CREATE TABLE `table_process` (
`source_table` varchar(200) NOT NULL COMMENT '来源表',
`operate_type` varchar(200) NOT NULL COMMENT '操作类型 insert,update,delete',
`sink_type` varchar(200) DEFAULT NULL COMMENT '输出类型 hbase kafka',
`sink_table` varchar(200) DEFAULT NULL COMMENT '输出表(主题)',
`sink_columns` varchar(2000) DEFAULT NULL COMMENT '输出字段',
`sink_pk` varchar(200) DEFAULT NULL COMMENT '主键字段',
`sink_extend` varchar(200) DEFAULT NULL COMMENT '建表扩展',
PRIMARY KEY (`source_table`,`operate_type`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

1.读取状态2.过滤数据

3.分流

ODS:

  • 数据源:行为数据,业务数据
  • 架构分析:
    FlinkCDC: DataStream/FlinkSOIFlinkCDC/Maxwell/Canal保持数据原貌,不做任何修改! ods_base_log,ods_base_db

DWD-DIM:

行为数据:DWD(Kafka)

1.过滤脏数据 --> 侧输出流 脏数据率

2.新老用户校验 --> 前台校验不准

3.分流 --> 侧输出流 页面、启动、曝光、动作、错误

4.写入Kafka

业务数据:DWD (Kafka)-DIM(Phoenix)

1.过滤数据-->删除数据

2.读取配置表创建广播流

3.连接主流和广播流并处理

1)广播流数据:

  • 解析数据
  • Phoenix 建表(HBase)
  • 写入状态广播

2)主流数据

  • 读取状态
  • 过滤字段
  • 分流(添加 SinkTable 字段)

4.提取Kafka和 HBase 流,分别对应的位置

5.HBase流:自定义 Sink

6.Kafka流:自定义序列化方式

大数据-数据仓库-实时数仓架构分析

大数据-业务数据采集-FlinkCDC

大数据 - DWD&DIM 行为数据

大数据 - DWD&DIM 业务数据

大数据 DWM层 业务实现

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
343 7
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
51 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
89 1
|
2月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
56 3
|
29天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
68 4
|
1月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4
|
1月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
58 3
|
1月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
71 2
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
115 2