Kubernetes(K8S) 监控 Prometheus + Grafana

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: Kubernetes(K8S) 监控 Prometheus + Grafana

监控指标

集群监控

  • 节点资源利用率
  • 节点数
  • 运行Pods

Pod 监控

  • 容器指标
  • 应用程序
Prometheus

开源的

监控、报警、数据库

以HTTP协议周期性抓取被监控组件状态

不需要复杂的集成过程,使用http接口接入就可以了

Grafana

开源的数据分析和可视化工具

支持多种数据源

Yaml 文件

将 Yaml 传到 linux 服务器

node-exporter.yaml

prometheus

--configmap.yaml

--prometheus.deploy.yml

--prometheus.svc.yml

--rbac-setup.yaml

grafana

--grafana-deploy.yaml

--grafana-ing.yaml

--grafana-svc.yaml

Prometheus Yaml 文件
  • node-exporter.yaml
    守护进程
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: kube-system
  labels:
    k8s-app: node-exporter
spec:
  selector:
    matchLabels:
      k8s-app: node-exporter
  template:
    metadata:
      labels:
        k8s-app: node-exporter
    spec:
      containers:
      - image: prom/node-exporter
        name: node-exporter
        ports:
        - containerPort: 9100
          protocol: TCP
          name: http
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: node-exporter
  name: node-exporter
  namespace: kube-system
spec:
  ports:
  - name: http
    port: 9100
    nodePort: 31672
    protocol: TCP
  type: NodePort
  selector:
    k8s-app: node-exporter
  • configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-system
data:
  prometheus.yml: |
    global:
      scrape_interval:     15s
      evaluation_interval: 15s
    scrape_configs:
    - job_name: 'kubernetes-apiservers'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-nodes'
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics
    - job_name: 'kubernetes-cadvisor'
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name
    - job_name: 'kubernetes-services'
      kubernetes_sd_configs:
      - role: service
      metrics_path: /probe
      params:
        module: [http_2xx]
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__address__]
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.example.com:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        target_label: kubernetes_name
    - job_name: 'kubernetes-ingresses'
      kubernetes_sd_configs:
      - role: ingress
      relabel_configs:
      - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
        regex: (.+);(.+);(.+)
        replacement: ${1}://${2}${3}
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.example.com:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_ingress_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_ingress_name]
        target_label: kubernetes_name
    - job_name: 'kubernetes-pods'
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_pod_name]
        action: replace
        target_label: kubernetes_pod_name
  • prometheus.deploy.yml
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    name: prometheus-deployment
  name: prometheus
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      containers:
      - image: prom/prometheus:v2.0.0
        name: prometheus
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: "/prometheus"
          name: data
        - mountPath: "/etc/prometheus"
          name: config-volume
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
          limits:
            cpu: 500m
            memory: 2500Mi
      serviceAccountName: prometheus    
      volumes:
      - name: data
        emptyDir: {}
      - name: config-volume
        configMap:
          name: prometheus-config
  • prometheus.svc.yml
---
kind: Service
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus
  namespace: kube-system
spec:
  type: NodePort
  ports:
  - port: 9090
    targetPort: 9090
    nodePort: 30303
  selector:
    app: prometheus
  • rbac-setup.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes
  - nodes/proxy
  - services
  - endpoints
  - pods
  verbs: ["get", "list", "watch"]
- apiGroups:
  - extensions
  resources:
  - ingresses
  verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: kube-system
grafana Yaml 文件
  • grafana-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: grafana-core
  namespace: kube-system
  labels:
    app: grafana
    component: core
spec:
  replicas: 1
  selector:
    matchLabels:
      app: grafana
      component: core
  template:
    metadata:
      labels:
        app: grafana
        component: core
    spec:
      containers:
      - image: grafana/grafana:4.2.0
        name: grafana-core
        imagePullPolicy: IfNotPresent
        # env:
        resources:
          # keep request = limit to keep this container in guaranteed class
          limits:
            cpu: 100m
            memory: 100Mi
          requests:
            cpu: 100m
            memory: 100Mi
        env:
          # The following env variables set up basic auth twith the default admin user and admin password.
          - name: GF_AUTH_BASIC_ENABLED
            value: "true"
          - name: GF_AUTH_ANONYMOUS_ENABLED
            value: "false"
          # - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          #   value: Admin
          # does not really work, because of template variables in exported dashboards:
          # - name: GF_DASHBOARDS_JSON_ENABLED
          #   value: "true"
        readinessProbe:
          httpGet:
            path: /login
            port: 3000
          # initialDelaySeconds: 30
          # timeoutSeconds: 1
        volumeMounts:
        - name: grafana-persistent-storage
          mountPath: /var
      volumes:
      - name: grafana-persistent-storage
        emptyDir: {}
  • grafana-ing.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
   name: grafana
   namespace: kube-system
spec:
   rules:
   - host: k8s.grafana
     http:
       paths:
       - path: /
         backend:
          serviceName: grafana
          servicePort: 3000
  • grafana-svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: kube-system
  labels:
    app: grafana
    component: core
spec:
  type: NodePort
  ports:
    - port: 3000
  selector:
    app: grafana
    component: core

部署

[root@k8smaster monitor]# ls
grafana  node-exporter.yaml  prometheus
# 安装 Prometheus
[root@k8smaster monitor]# kubectl create -f prometheus/rbac-setup.yaml 
clusterrole.rbac.authorization.k8s.io/prometheus created
serviceaccount/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
[root@k8smaster monitor]# kubectl create -f node-exporter.yaml
daemonset.apps/node-exporter created
service/node-exporter created
[root@k8smaster monitor]# kubectl create -f prometheus/configmap.yaml
configmap/prometheus-config created
[root@k8smaster monitor]# kubectl create -f prometheus/prometheus.deploy.yml
deployment.apps/prometheus created
[root@k8smaster monitor]# kubectl create -f prometheus/prometheus.svc.yml
service/prometheus created
# 安装 Grafana
[root@k8smaster monitor]# kubectl create -f grafana/grafana-deploy.yaml 
deployment.apps/grafana-core created
[root@k8smaster monitor]# kubectl create -f grafana/grafana-svc.yaml 
service/grafana created
[root@k8smaster monitor]# kubectl create -f grafana/grafana-ing.yaml 
ingress.extensions/grafana created
# 查看状态
[root@k8smaster monitor]# kubectl get pod,svc -n kube-system
NAME                                    READY   STATUS    RESTARTS   AGE
pod/coredns-7ff77c879f-jzlk2            1/1     Running   3          46d
pod/coredns-7ff77c879f-lkcdc            1/1     Running   1          7d
pod/etcd-k8smaster                      1/1     Running   2          46d
pod/grafana-core-768b6bf79c-cql42       1/1     Running   0          2m17s
pod/kube-apiserver-k8smaster            1/1     Running   2          46d
pod/kube-controller-manager-k8smaster   1/1     Running   3          46d
pod/kube-proxy-2245f                    1/1     Running   11         46d
pod/kube-proxy-4rlp8                    1/1     Running   7          46d
pod/kube-proxy-c8fq4                    1/1     Running   0          5d2h
pod/kube-proxy-gtfts                    1/1     Running   2          46d
pod/kube-scheduler-k8smaster            1/1     Running   4          46d
pod/metrics-server-655cb9c58b-xcxzw     1/1     Running   17         5d2h
pod/node-exporter-52hwv                 1/1     Running   0          34m
pod/node-exporter-mj8tk                 1/1     Running   0          34m
pod/node-exporter-n2ctw                 1/1     Running   0          34m
pod/prometheus-7486bf7f4b-4f7vt         1/1     Running   0          3m
NAME                     TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                  AGE
service/grafana          NodePort    10.107.69.123    <none>        3000:31116/TCP           2m8s
service/kube-dns         ClusterIP   10.96.0.10       <none>        53/UDP,53/TCP,9153/TCP   46d
service/metrics-server   ClusterIP   10.104.178.240   <none>        443/TCP                  11d
service/node-exporter    NodePort    10.104.117.209   <none>        9100:31672/TCP           34m
service/prometheus       NodePort    10.106.76.46     <none>        9090:30303/TCP           13m
[root@k8smaster monitor]#

默认用户名:admin 密码:admin

打开 Grafana,配置数据源,

配置数据源,

点击 Add

导入显示模板

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
3月前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana(docker安装)
本文档详细介绍了如何使用Docker容器快速部署Prometheus监控系统和Grafana数据可视化平台。该方案适用于需要快速搭建监控环境的开发测试场景,具备部署简单、资源占用低、易于维护等特点。
|
4月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
396 33
|
4月前
|
Prometheus Kubernetes 监控
Kubernetes监控:Prometheus与AlertManager结合,配置邮件告警。
完成这些步骤之后,您就拥有了一个可以用邮件通知你的Kubernetes监控解决方案了。当然,所有的这些配置都需要相互照应,还要对你的Kubernetes集群状况有深入的了解。希望这份指南能帮助你创建出适合自己场景的监控系统,让你在首次发现问题时就能做出响应。
174 22
|
4月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
4月前
|
存储 运维 Kubernetes
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。
|
6月前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
5月前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
7月前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
324 20
|
7月前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
693 19
|
6月前
|
人工智能 运维 监控
容器服务Kubernetes场景下可观测体系生产级最佳实践
阿里云容器服务团队在2024年继续蝉联Gartner亚洲唯一全球领导者象限,其可观测体系是运维的核心能力之一。该体系涵盖重保运维、大规模集群稳定性、业务异常诊断等场景,特别是在AI和GPU场景下提供了全面的观测解决方案。通过Tracing、Metric和Log等技术,阿里云增强了对容器网络、存储及多集群架构的监控能力,帮助客户实现高效运维和成本优化。未来,结合AI助手,将进一步提升问题定位和解决效率,缩短MTTR,助力构建智能运维体系。

推荐镜像

更多