【AI大模型】Transformers大模型库(十二):Evaluate模型评估

简介: 【AI大模型】Transformers大模型库(十二):Evaluate模型评估

一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Evaluate模型评估

二、Evaluate模型评估

2.1 概述

Transformers库中的evaluate API主要用于评估模型在特定数据集上的性能。虽然Transformers库本身没有直接提供一个名为evaluate的独立API函数,但通常通过Trainer类的evaluate方法来实现模型评估。下面是一个使用Python和Transformers库进行模型评估的基本步骤,假设你已经有了一个预训练模型和相应的数据集处理器。

2.2 使用方法

2.2.1 步骤1: 导入必要的库

from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset

2.2.2 步骤2: 加载模型和分词器

model_name = "bert-base-uncased"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

2.2.3 步骤3: 准备数据集

这里假设你使用的是Hugging Face的datasets库加载数据,例如IMDB数据集。

dataset = load_dataset("imdb")

2.2.4 步骤4: 数据预处理

定义一个函数来对数据进行编码,适合模型输入。

def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True, padding='max_length')
 
encoded_dataset = dataset.map(preprocess_function, batched=True)

2.2.5 步骤5: 创建训练和评估数据集

train_dataset = encoded_dataset['train']
eval_dataset = encoded_dataset['test']

2.2.6 步骤6: 设置训练参数并创建Trainer

training_args = TrainingArguments(
    output_dir='./results',          # 输出目录
    evaluation_strategy="epoch",   # 每个epoch评估一次
    per_device_eval_batch_size=16,  # 评估时的批次大小
)
 
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset
)

2.2.7 步骤7: 进行模型评估

# 使用Trainer的evaluate方法进行评估
eval_result = trainer.evaluate()
print(eval_result)

三、总结

以上代码展示了如何使用Transformers库中的Trainer类来评估模型。评估结果将包含各种指标,如准确率,具体指标还要取决于你的模型。

目录
相关文章
|
3天前
|
人工智能 数据可视化
文本、图像、点云任意模态输入,AI能够一键生成高质量CAD模型了
《CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM》提出了一种新型系统CAD-MLLM,能够根据文本、图像、点云或其组合生成高质量的CAD模型。该系统基于大型语言模型(LLM),通过多模态数据对齐和渐进式训练策略,实现了高效的CAD模型生成。作者创建了首个包含文本、图像、点云和命令序列的多模态数据集Omni-CAD,包含约450K个实例。实验表明,CAD-MLLM在多个任务上表现出色,特别是在点云条件生成任务中显著优于现有方法。未来工作将聚焦于提升计算效率、增加数据多样性及探索新模态。
47 18
|
1天前
|
人工智能 Java 语音技术
零基础上手百炼语音AI模型|Github示例工程介绍
零基础上手百炼语音AI模型|Github示例工程介绍
|
1天前
|
人工智能 自然语言处理 机器人
招商银行X通义大模型,2024年度AI最佳实践案例!
招商银行X通义大模型,2024年度AI最佳实践案例!
19 2
|
2天前
|
人工智能 网络协议 IDE
使用通义灵码AI高效学习muduo网络库开发指南
Muduo 是一个基于 C++11 的高性能网络库,支持多线程和事件驱动,适用于构建高效的服务器和应用程序。它提供 TCP/IP 协议支持、异步非阻塞 I/O、定时器、异步日志等功能,并具备跨平台特性。通过 Git 克隆 muduo 仓库并切换至 C++17 分支可开始使用。借助 AI 工具如 Deepseak-v3,用户可以更便捷地学习和理解 Muduo 的核心模块及编写测试用例,提升开发效率。
|
1天前
|
机器学习/深度学习 人工智能 算法
DeepSeek:掀翻互联网底层的“东方神秘力量” ——当AI大模型成为网络世界的“基建狂魔”
DeepSeek正重构网络底层逻辑,从“哑管道”到“认知神经”,赋予网络思考能力。它通过意图驱动和认知架构,优化带宽资源,提升效率。技术上,MOE+MLA架构与FP8精度训练大幅降低成本,性能超越传统模型。产业链方面,通信巨头转型为“AI驯兽师”,推出智能预测、定制化网络等服务。然而,AI基建也面临安全挑战,如僵尸网络攻击和隐私问题。展望6G,AGI将成新“网络原住民”,带来更智能的服务。这场变革不仅提升了连接效率,还创造了更多价值。
|
2天前
|
人工智能 Cloud Native 安全
AI云全面支撑大模型落地!一文看完2025企业用云十大趋势
AI云全面支撑大模型落地!一文看完2025企业用云十大趋势
16 1
|
3天前
|
人工智能 自然语言处理 搜索推荐
阿里云 AI 搜索开放平台集成 DeepSeek 模型
阿里云 AI 搜索开放平台最新上线 DeepSeek -R1系列模型。
|
25天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
124 24
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
|
19天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
1230 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
16天前
|
人工智能 开发框架 数据可视化
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
184 27

热门文章

最新文章