【AI大模型】Transformers大模型库(九):大模型微调之计算微调参数占比

简介: 【AI大模型】Transformers大模型库(九):大模型微调之计算微调参数占比

一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍如何打印微调参数,以及微调参数占比计算。

二、计算微调参数占比

2.1 概述

基于LoRA进行模型微调时,需要先冻结全部参数,再指定相应的Linear层进行微调,那么如何计算全部参数,如何计算微调参数以及如何计算微调参数占全部参数的比例呢?

2.2 模型参数结构一览

这里以Qwen2为例,在微调前,对大模型结构有所认知,对于QLoRA量化微调算法来说,只微调大模型的线性层(Linear层),后面会看到在LoRAConfig中,仅指定了"q_proj"、"k_proj"等线性层,这个很重要,微调哪些参数,心中要有数

Qwen2ForCausalLM(
  (model): Qwen2Model(
    (embed_tokens): Embedding(152064, 3584)
    (layers): ModuleList(
      (0-27): 28 x Qwen2DecoderLayer(
        (self_attn): Qwen2SdpaAttention(
          (q_proj): Linear4bit(in_features=3584, out_features=3584, bias=True)
          (k_proj): Linear4bit(in_features=3584, out_features=512, bias=True)
          (v_proj): Linear4bit(in_features=3584, out_features=512, bias=True)
          (o_proj): Linear4bit(in_features=3584, out_features=3584, bias=False)
          (rotary_emb): Qwen2RotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear4bit(in_features=3584, out_features=18944, bias=False)
          (up_proj): Linear4bit(in_features=3584, out_features=18944, bias=False)
          (down_proj): Linear4bit(in_features=18944, out_features=3584, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm()
        (post_attention_layernorm): Qwen2RMSNorm()
      )
    )
    (norm): Qwen2RMSNorm()
  )
  (lm_head): Linear(in_features=3584, out_features=152064, bias=False)
)

2.3 微调参数占比计算

我们采用代码中的print_trainable_parameters计算全部参数、微调参数、微调参数占比,在这之前:

  • 首先,用第一个循环代码for param in model.parameters():将所有参数冻结(freeze),
  • 其次,通过get_peft_model和LoraConfig指定计划微调的Linear层
  • 最后,采用print_trainable_parameters计算param.requires_grad=True可梯度更新的参数量、总参数量和占比
for param in model.parameters():
    param.requires_grad = False  # freeze the model - train adapters later
    if param.ndim == 1:
        # cast the small parameters (e.g. layernorm) to fp32 for stability
        param.data = param.data.to(torch.float32)
 
class CastOutputToFloat(nn.Sequential):
    def forward(self, x):
        return super().forward(x).to(torch.float32)
 
model.lm_head = CastOutputToFloat(model.lm_head)
 
def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )
 
config = LoraConfig(
    r=64,
    lora_alpha=16,
    target_modules=["q_proj", "v_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
 
model = get_peft_model(model, config)
print_trainable_parameters(model)
  •  遍历模型参数: 使用for _, param in model.named_parameters():循环遍历模型中的所有参数。named_parameters()返回一个迭代器,每个元素包含参数的名称和参数本身,这里下划线_表示我们忽略了参数名称,直接使用参数值。
  • 计算参数数量: 对于每个参数,通过param.numel()计算其元素数量(即参数的大小),并累加到all_params以得到模型的总参数数。如果参数param.requires_grad为True,说明该参数在训练时是可更新的,于是将其大小累加到trainable_params。  

三、总结

本文先对Qwen2模型结构进行一览,做到心中有数,之后讲解如何编写print_trainable_parameters(model)方法,如何冻结所有参数,如何指定需要微调的参数以及计算占比,后续会详细讲LoRA微调方法,这里对计算微调参数占比方式进行记录。

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
6天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
38 3
|
9天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
40 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
5天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
6天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
10天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
55 4
|
机器学习/深度学习 人工智能 算法
阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求
本文讲的是阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求【IT168 云计算】计算正推动着人工智能产业更大规模的爆发。
2103 2
|
机器学习/深度学习 人工智能 算法
阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求
本文讲的是阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求,计算正推动着人工智能产业更大规模的爆发。9月12日,阿里云宣布推出全新一代异构加速平台,为人工智能产业提供多场景化的全球加速能力。这是阿里云异构计算家族首次亮相,涵盖GPU、FPGA在内等6款异构实例,可满足从图形渲染到高性能计算及人工智能等复杂应用的计算需求。
2270 0

热门文章

最新文章