AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

简介: AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

一、引言

今天开始写大语言模型推理服务框架的第三篇——LocalAI,前两篇见

大语言模型推理服务框架—Ollama

大语言模型推理服务框架—Xinference

这个框架相比于前两篇,如果服务器没办法科学上网,学习和使用难度都要上一个台阶,花了几个小时踩了几个坑,将排坑后的内容分享给大家,如果大家觉得有用的话,希望获得您的关注、收藏、点赞及评论。

二、排坑后的Local-AI安装教程

1.docker安装及curl测试

# 拉取LocalAI项目
git clone https://github.com/mudler/LocalAI
 
# 从hf-mirror.com镜像站下载luna-ai-llama2模型,存储在models目录中
wget https://hf-mirror.com/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2
#wget https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2
 
# 将提示词模版中的getting_started.tmpl复制到models目录并和模型文件同名+.tmpl后缀
cp -rf prompt-templates/getting_started.tmpl models/luna-ai-llama2.tmpl
 
# docker拉取并启动aio-gpu镜像
# 指定--models-path为/models
# 将宿主机/xxx/LocalAI/models与container内的models目录进行关联,方便在宿主机修改文件
docker run -tid --name local-ai -p 16080:8080 --gpus all  -v /xxx/LocalAI/models:/models   localai/localai:latest-aio-gpu-nvidia-cuda-12 --models-path /models
 
# 查看当前服务下的模型列表
curl http://宿主机ip:16080/v1/models
# 返回:{"object":"list","data":[{"id":"luna-ai-llama2","object":"model"}]}
 
# 测试模型是否启动
curl http://宿主机ip:16080/v1/chat/completions -H "Content-Type: application/json" -d '{"model": "luna-ai-llama2","messages": [{"role": "user", "content": "who are you?"}],"temperature": 0.9}'
# 返回:{"created":1715329633,"object":"chat.completion","id":"e24ccbb9-3908-4e92-b25a-f5861c2582ce","model":"luna-ai-llama2","choices":[{"index":0,"finish_reason":"stop","message":{"role":"assistant","content":"I am a 28-year-old software developer living in New York City.\u003c/s\u003e"}}],"usage":{"prompt_tokens":10,"completion_tokens":19,"total_tokens":29}}

几个注意的点:

  • 如果服务器在境内且不能科学上网,需要将huggingface.co替换为hf-mirror.com,hf-mirror.com是huggingface.co的镜像站,完全复刻huggingface.co
  • 镜像选择localai/localai:latest-aio-gpu-nvidia-cuda-12,aio(all-in-one)镜像内集成了文生文、文生图、图生文、语音转文本、文本转语音等模型,目标是方便使用多种模型,但其实每次使用都要现从huggingface.co上拉取,境内服务器苦不堪言
  • 模型下载好,就可以用curl使用了,采用OpenAI兼容的API,这个还是不错的

2.解决AIO镜像无法从hf拉取模型的问题

进入到models目录,yaml是aio集成模型的配置文件

打开修改镜像地址:将download_files内uri路径中的huggingface.co替换为hf-mirror.com

如果不是https开头的uri,比如b3d7d7ab5e9969a1408e28d5d7cd22f7.yaml

可以将uri替换为https开头的路径,直接到hf-mirror搜索到对应的模型,将模型路径中的blog/main改成resolve/main即为模型的下载路径

三、Local-AI前端

登陆"宿主机ip:port",比如123.123.123.123:16080,16080是docker启动时设置的。

1.Home

2.Models

进入到Models可以搜索需要的模型并且安装(搜了些国内的,很优先,更新没那么及时。

3.API

进入到API界面,列出了API调用说明,以OpenAI兼容API的形式对外提供。

四、总结

本文列出了排坑后的Local-AI安装教程,及Local-AI前端,个人感觉,比如很友好,特别是对境内服务器开发者,建议还是看前两篇文章,选择Xinference和Ollama吧。如果仍然感兴趣,可以登陆项目github以及查看文档进一步学习。

感谢各位阅读,花了几个小时踩坑,又花了一段时间写博客,结论就是Local-AI目前不是最好的选择,我帮大家躺过坑了。期待大家的关注、点赞、收藏和评论。

如果还有时间,期待您再看看我的其他文章:

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
9天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
205 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
9天前
|
人工智能 API
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
MMedAgent 是专为医疗领域设计的多模态AI智能体,支持多种医疗任务,包括医学影像处理、报告生成等,性能优于现有开源方法。
65 19
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
|
4天前
|
人工智能
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
RealisHuman 是一个创新的后处理框架,专注于修复生成图像中畸形的人体部位,如手和脸,通过两阶段方法提升图像的真实性。
43 11
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
|
6天前
|
人工智能 运维 Prometheus
AIOpsLab:云服务自动化运维 AI,微软开源云服务 AI 框架,覆盖整个生命周期
AIOpsLab 是微软等机构推出的开源框架,支持云服务自动化运维,涵盖故障检测、根本原因分析等完整生命周期。
66 13
AIOpsLab:云服务自动化运维 AI,微软开源云服务 AI 框架,覆盖整个生命周期
|
6天前
|
人工智能 自然语言处理 监控
从数据洞察到动态优化:SaaS+AI引领智能化服务新时代
SaaS(软件即服务)结合AI(人工智能),正引领企业解决方案向智能化转型。SaaS+AI大幅提升了工作效率与决策质量。它能自动完成重复任务、简化设置流程、主动识别并解决潜在问题,还能根据用户需求提供个性化推荐和动态优化配置。
40 1
从数据洞察到动态优化:SaaS+AI引领智能化服务新时代
|
7天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
44 10
|
7天前
|
人工智能 测试技术 决策智能
玩转智能体魔方!清华推出AgentSquare模块化搜索框架,开启AI智能体高速进化时代
清华大学研究团队提出模块化LLM智能体搜索(MoLAS)框架AgentSquare,将LLM智能体设计抽象为规划、推理、工具使用和记忆四大模块,实现模块间的轻松组合与替换。通过模块进化和重组机制,AgentSquare显著提升了智能体的适应性和灵活性,并在多个基准测试中表现出色,平均性能提高17.2%。此外,该框架还具备可解释性,有助于深入理解智能体架构对任务性能的影响。论文地址:https://arxiv.org/abs/2410.06153
46 10
|
7天前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
|
16天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
164 97