Python爬虫开发:爬取简单的网页数据

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 在数据分析中,数据的获取是第一步。随着互联网的普及,网络爬虫成为获取数据的重要手段。本文将详细介绍如何使用Python爬取简单的网页数据。

在数据分析中,数据的获取是第一步。随着互联网的普及,网络爬虫成为获取数据的重要手段。本文将详细介绍如何使用Python爬取简单的网页数据。

一、环境准备

在开始之前,我们需要确保安装了以下Python库:

  • requests:用于发送HTTP请求
  • BeautifulSoup:用于解析HTML文档
  • pandas:用于数据处理

安装命令如下:

pip install requests beautifulsoup4 pandas

二、了解目标网站

在爬取数据之前,我们需要了解目标网站的结构。掘金是一个技术社区,我们可以从首页爬取文章的标题、链接和作者信息。


首先,打开浏览器,进入掘金首页(juejin.cn/),并查看网页的HTM…

三、发送HTTP请求

使用requests库发送HTTP请求获取网页内容:

import requests
url = 'https://juejin.cn/'
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers)
# 打印网页内容
print(response.text)

四、解析HTML文档

使用BeautifulSoup解析HTML文档:

from bs4 import BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# 打印解析后的HTML文档
print(soup.prettify())

五、提取数据

根据HTML结构提取文章的标题、链接和作者信息:

articles = soup.find_all('div', class_='content-box')
for article in articles:
    title = article.find('a', class_='title').text
    link = article.find('a', class_='title')['href']
    author = article.find('a', class_='username').text
    print(f"标题: {title}, 链接: https://juejin.cn{link}, 作者: {author}")

六、保存数据

将提取的数据保存到CSV文件中:

import pandas as pd
data = []
for article in articles:
    title = article.find('a', class_='title').text
    link = article.find('a', class_='title')['href']
    author = article.find('a', class_='username').text
    data.append({
        '标题': title,
        '链接': f"https://juejin.cn{link}",
        '作者': author
    })
df = pd.DataFrame(data)
df.to_csv('juejin_articles.csv', index=False, encoding='utf-8-sig')
print("数据已保存到juejin_articles.csv")

七、综合实例

下面是一个综合的完整示例,展示如何爬取掘金首页的文章信息并保存到CSV文件中:

import requests
from bs4 import BeautifulSoup
import csv

# 用户ID和基础URL
user_id = "换成自己的掘金user_id"
base_url = f"https://juejin.cn/user/{user_id}/posts"

# 发送请求获取用户文章列表页面
response = requests.get(base_url)
soup = BeautifulSoup(response.text, 'html.parser')

# 提取文章链接
articles = soup.find_all('a', class_='title')
article_urls = ["https://juejin.cn" + article['href'] for article in articles]

# 创建CSV文件
with open('juejin_articles.csv', 'w', newline='', encoding='utf-8') as file:
    writer = csv.writer(file)
    writer.writerow(['标题', '链接', '内容'])

    # 遍历每篇文章链接并爬取内容
    for url in article_urls:
        article_response = requests.get(url)
        article_soup = BeautifulSoup(article_response.text, 'html.parser')

        # 提取标题
        title_tag = article_soup.find('h1', class_='article-title')
        title = title_tag.text.strip() if title_tag else '标题未找到'

        # 提取内容
        content_tag = article_soup.find('div', class_='markdown-body')
        content = content_tag.text.strip() if content_tag else '内容未找到'

        # 写入CSV文件
        writer.writerow([title, url, content])

print("数据爬取完成并保存到 juejin_articles.csv")

八、结果输出

运行上述代码后,将会在当前目录下生成一个名为juejin_articles.csv的文件,文件内容如下:

1723472708152.jpg

九、总结

本文详细介绍了如何使用Python爬取简单的网页数据,以掘金为例,展示了从发送HTTP请求、解析HTML文档到提取和保存数据的完整过程。通过这个示例,你可以掌握基本的网页爬取技巧,为后续的数据分析打下基础。希望本文对你有所帮助。


作者:Rjdeng

链接:https://juejin.cn/post/7400281441802584075

相关文章
|
3天前
|
机器学习/深度学习 数据采集 算法
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
14 1
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
|
6天前
|
算法 Python
揭秘!Python数据魔术师如何玩转线性回归,让你的预测精准到不可思议
【9月更文挑战第13天】在数据科学领域,线性回归以其优雅而强大的特性,将复杂的数据关系转化为精准的预测模型。本文将揭秘Python数据魔术师如何利用这一统计方法,实现令人惊叹的预测精度。线性回归假设自变量与因变量间存在线性关系,通过拟合直线或超平面进行预测。Python的scikit-learn库提供了简便的LinearRegression类,使模型构建、训练和预测变得简单直接。
18 5
|
7天前
|
存储 算法 测试技术
预见未来?Python线性回归算法:数据中的秘密预言家
【9月更文挑战第11天】在数据的海洋中,线性回归算法犹如智慧的预言家,助我们揭示未知。本案例通过收集房屋面积、距市中心距离等数据,利用Python的pandas和scikit-learn库构建房价预测模型。经过训练与测试,模型展现出较好的预测能力,均方根误差(RMSE)低,帮助房地产投资者做出更明智决策。尽管现实关系复杂多变,线性回归仍提供了有效工具,引领我们在数据世界中自信前行。
22 5
|
7天前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
22 5
|
7天前
|
存储 安全 算法
RSA在手,安全我有!Python加密解密技术,让你的数据密码坚不可摧
【9月更文挑战第11天】在数字化时代,信息安全至关重要。传统的加密方法已难以应对日益复杂的网络攻击。RSA加密算法凭借其强大的安全性和广泛的应用场景,成为保护敏感数据的首选。本文介绍RSA的基本原理及在Python中的实现方法,并探讨其优势与挑战。通过使用PyCryptodome库,我们展示了RSA加密解密的完整流程,帮助读者理解如何利用RSA为数据提供安全保障。
22 5
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
|
2月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
64 4
|
2月前
|
数据采集 存储 API
在信息时代,Python爬虫用于自动化网络数据采集,提高效率。
【7月更文挑战第5天】在信息时代,Python爬虫用于自动化网络数据采集,提高效率。基本概念包括发送HTTP请求、解析HTML、存储数据及异常处理。常用库有requests(发送请求)和BeautifulSoup(解析HTML)。基本流程:导入库,发送GET请求,解析网页提取数据,存储结果,并处理异常。应用案例涉及抓取新闻、商品信息等。
78 2
|
9天前
|
数据采集 机器学习/深度学习 搜索推荐
Python爬虫技术基础与应用场景详解
本文介绍了爬虫技术的基本概念、原理及应用场景,包括数据收集、价格监测、竞品分析和搜索引擎优化等。通过一个实战案例展示了如何使用Python爬取电商网站的商品信息。强调了在使用爬虫技术时需遵守法律法规和道德规范,确保数据抓取的合法性和合规性。
|
2月前
|
数据采集 存储 Java
如何让Python爬虫在遇到异常时继续运行
构建健壮Python爬虫涉及异常处理、代理IP和多线程。通过try/except捕获异常,保证程序在遇到问题时能继续运行。使用代理IP(如亿牛云)防止被目标网站封锁,多线程提升抓取效率。示例代码展示了如何配置代理,设置User-Agent,以及使用SQLite存储数据。通过`fetch_url`函数和`ThreadPoolExecutor`实现抓取与重试机制。
如何让Python爬虫在遇到异常时继续运行