NumPy 教程 之 Numpy 数组操作 16

简介: 本教程介绍Numpy中的数组操作,涵盖修改形状、翻转、维度调整、连接与分割及元素增删等技巧。重点讲解了数组连接方法,包括`concatenate`函数的应用,该函数可在指定轴上合并多个数组。示例展示了如何沿不同轴连接两个二维数组,实现垂直与水平扩展,为高效数组操作提供了实用指南。

NumPy 教程 之 Numpy 数组操作 16

Numpy 数组操作

Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:

修改数组形状
翻转数组
修改数组维度
连接数组
分割数组
数组元素的添加与删除

连接数组

函数 描述

concatenate 连接沿现有轴的数组序列
stack 沿着新的轴加入一系列数组。
hstack 水平堆叠序列中的数组(列方向)
vstack 竖直堆叠序列中的数组(行方向)

numpy.concatenate

numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:

numpy.concatenate((a1, a2, ...), axis)

参数说明:

a1, a2, ...:相同类型的数组
axis:沿着它连接数组的轴,默认为 0

实例

import numpy as np

a = np.array([[1,2],[3,4]])

print ('第一个数组:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]])

print ('第二个数组:')
print (b)
print ('\n')

两个数组的维度相同

print ('沿轴 0 连接两个数组:')
print (np.concatenate((a,b)))
print ('\n')

print ('沿轴 1 连接两个数组:')
print (np.concatenate((a,b),axis = 1))

输出结果为:

第一个数组:
[[1 2]
[3 4]]

第二个数组:
[[5 6]
[7 8]]

沿轴 0 连接两个数组:
[[1 2]
[3 4]
[5 6]
[7 8]]

沿轴 1 连接两个数组:
[[1 2 5 6]
[3 4 7 8]]

目录
相关文章
|
1天前
|
计算机视觉 Python
PIL图像转换为Numpy数组:技术与案例详解
本文介绍了如何将PIL图像转换为Numpy数组,以便利用Numpy进行数学运算和向量化操作。首先简要介绍了PIL和Numpy的基本功能,然后详细说明了转换过程,包括导入库、打开图像文件、使用`np.array()`或`np.asarray()`函数进行转换,并通过打印数组形状验证转换结果。最后,通过裁剪、旋转和缩放等案例展示了转换后的应用,以及如何将Numpy数组转换回PIL图像。此外,还介绍了处理base64编码图像的完整流程。
13 4
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
93 10
|
2月前
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
53 1
|
2月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
45 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
2月前
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
39 2
|
2月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
115 4
|
2月前
|
机器学习/深度学习 并行计算 调度
CuPy:将 NumPy 数组调度到 GPU 上运行
CuPy:将 NumPy 数组调度到 GPU 上运行
110 1
|
3月前
|
Python
numpy | 插入不定长字符数组测试OK
本文介绍了如何在numpy中创建和操作不定长字符数组,包括插入和截断操作的测试。
|
3月前
|
API Python
Numpy 数组的一些集合操作
Numpy 数组的一些集合操作
42 0
|
3月前
|
编译器 Linux API
基于类型化 memoryview 让 Numpy 数组和 C 数组共享内存
基于类型化 memoryview 让 Numpy 数组和 C 数组共享内存
43 0