NumPy 教程 之 Numpy 数组操作 16
Numpy 数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:
修改数组形状
翻转数组
修改数组维度
连接数组
分割数组
数组元素的添加与删除
连接数组
函数 描述
concatenate 连接沿现有轴的数组序列
stack 沿着新的轴加入一系列数组。
hstack 水平堆叠序列中的数组(列方向)
vstack 竖直堆叠序列中的数组(行方向)
numpy.concatenate
numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:
numpy.concatenate((a1, a2, ...), axis)
参数说明:
a1, a2, ...:相同类型的数组
axis:沿着它连接数组的轴,默认为 0
实例
import numpy as np
a = np.array([[1,2],[3,4]])
print ('第一个数组:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]])
print ('第二个数组:')
print (b)
print ('\n')
两个数组的维度相同
print ('沿轴 0 连接两个数组:')
print (np.concatenate((a,b)))
print ('\n')
print ('沿轴 1 连接两个数组:')
print (np.concatenate((a,b),axis = 1))
输出结果为:
第一个数组:
[[1 2]
[3 4]]
第二个数组:
[[5 6]
[7 8]]
沿轴 0 连接两个数组:
[[1 2]
[3 4]
[5 6]
[7 8]]
沿轴 1 连接两个数组:
[[1 2 5 6]
[3 4 7 8]]