Python多线程怎么做?

简介: Python 3 中利用 `threading` 模块实现多线程。创建与执行线程有两种常见方式:一是直接使用 `Thread` 类实例,指定目标函数;二是通过继承 `Thread` 类并重写 `run` 方法。前者构造 `Thread` 对象时通过 `target` 参数指定函数,后者则在子类中定义线程的行为。两种方式均需调用 `start` 方法启动线程。示例展示了这两种创建线程的方法及输出顺序,体现线程并发执行的特点。

python3中多线程的实现使用了threading模块,它允许同一进程中运行多个线程。

如何创建和执行一个线程

一般我们有两种方法来创建线程,一种是以某个函数来作为起点,另一种是继承Thread类。

方法一

获取一个Thread对象,构造参数中target是起点函数,注意不要加括号。假如起点函数有参数,则可以通过args输入元组参数或者kwargs输入字典参数。

python

代码解读

复制代码

#! -*-conding=: UTF-8 -*-
# 2023/5/6 15:53
import time
from threading import Thread


def task():
    print("另外开始一个子线程做任务啦")
    time.sleep(1)  # 用time.sleep模拟任务耗时
    print("子线程任务结束啦")


if __name__ == '__main__':
    print("这里是主线程")
    # 创建线程对象
    t1 = Thread(target=task)
    # 启动
    t1.start()
    time.sleep(0.3)
    print("主线程依然可以干别的事")

输出结果为:

shell

代码解读

复制代码

这里是主线程
另外开始一个子线程做任务啦
主线程依然可以干别的事
子线程任务结束啦

方法二

python

代码解读

复制代码

#! -*-conding=: UTF-8 -*-
# 2023/5/6 15:53
import time
from threading import Thread


class NewThread(Thread):
    def __init__(self):
        Thread.__init__(self)  # 必须步骤

    def run(self):  # 入口是名字为run的方法
        print("开始新的线程做一个任务啦")
        time.sleep(1)  # 用time.sleep模拟任务耗时
        print("这个新线程中的任务结束啦")


if __name__ == '__main__':
    print("这里是主线程")
    # 创建线程对象
    t1 = NewThread()
    # 启动
    t1.start()
    time.sleep(0.3)  # 这里如果主线程结束,子线程会立刻退出,暂时先用sleep规避
    print("主线程依然可以干别的事")

输出结果为:

shell

代码解读

复制代码

这里是主线程
开始新的线程做一个任务啦
主线程依然可以干别的事
这个新线程中的任务结束啦


转载来源:https://juejin.cn/post/7229994357926887485

相关文章
|
11天前
|
数据采集 存储 安全
如何确保Python Queue的线程和进程安全性:使用锁的技巧
本文探讨了在Python爬虫技术中使用锁来保障Queue(队列)的线程和进程安全性。通过分析`queue.Queue`及`multiprocessing.Queue`的基本线程与进程安全特性,文章指出在特定场景下使用锁的重要性。文中还提供了一个综合示例,该示例利用亿牛云爬虫代理服务、多线程技术和锁机制,实现了高效且安全的网页数据采集流程。示例涵盖了代理IP、User-Agent和Cookie的设置,以及如何使用BeautifulSoup解析HTML内容并将其保存为文档。通过这种方式,不仅提高了数据采集效率,还有效避免了并发环境下的数据竞争问题。
如何确保Python Queue的线程和进程安全性:使用锁的技巧
|
8天前
|
调度 Python
Python 中如何实现多线程?
【8月更文挑战第29天】
28 6
|
12天前
|
API C语言 C++
C调用Python之多线程与traceback打印
C调用Python之多线程与traceback打印
21 2
|
17天前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
Python是一门强大的编程语言,提供了多种并发编程方式,其中多线程是非常重要的一种。本文将详细介绍Python的threading模块,包括其基本用法、线程同步、线程池等,最后附上一个综合详细的例子并输出运行结果。
|
15天前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
本文详细介绍了Python的threading模块,包括线程的创建、线程同步、线程池的使用,并通过多个示例展示了如何在实际项目中应用这些技术。通过学习这些内容,您应该能够熟练掌握Python中的多线程编程,提高编写并发程序的能力。 多线程编程可以显著提高程序的并发性能,但也带来了新的挑战和问题。在使用多线程时,需要注意避免死锁、限制共享资源的访问,并尽量使用线程池来管理和控制线程。
|
25天前
|
开发工具 计算机视觉 Python
大恒相机 - Python 多线程拍摄
大恒相机 - Python 多线程拍摄
31 1
|
27天前
|
调度 Python
|
10天前
|
数据采集 Java Python
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器
|
13天前
|
安全 Java Python
Python 中的多线程
【8月更文挑战第24天】
15 0
|
16天前
|
数据处理 Python
解锁Python多线程编程魔法,告别漫长等待!让数据下载如飞,感受科技带来的速度与激情!
【8月更文挑战第22天】Python以简洁的语法和强大的库支持在多个领域大放异彩。尽管存在全局解释器锁(GIL),Python仍提供多线程支持,尤其适用于I/O密集型任务。通过一个多线程下载数据的例子,展示了如何使用`threading`模块创建多线程程序,并与单线程版本进行了性能对比。实验表明,多线程能显著减少总等待时间,但在CPU密集型任务上GIL可能会限制其性能提升。此案例帮助理解Python多线程的优势及其适用场景。
23 0
下一篇
DDNS