前面写了两篇关于股价预测的,都是用的一元回归,也就是说只用了1个自变量。
例如用昨天的收盘价预测今天的收盘价,但是元素太单一的话,除非自变量的影响因素非常大,否则容易不准。
所以就有了多元回归,例如,昨天的成交量,收盘价,开盘价三个数据预测下一天的收盘价。这就是三元回归。
PostgreSQL可以通过MADlib库来实现多元回归。
举例:
p元线性回归
y1=b0+b1x11+b2x12+…+bpx1p+ε1
y2=b0+b1x21+b2x22+…+bpx2p+ε2
………………
求截距,斜率。
预测yn
yn=b0+b1xn1+b2xn2+…+bpxnp+εn
公式
lm(y: 收盘价 ~ x1: 昨日收盘价 + x2: 昨日成交量, $DATA)
用法举例:
http://doc.madlib.net/latest/group__grp__linreg.html
Create an input data set.
CREATE TABLE houses (id INT, tax INT, bedroom INT, bath FLOAT, price INT,
size INT, lot INT);
COPY houses FROM STDIN WITH DELIMITER '|';
1 | 590 | 2 | 1 | 50000 | 770 | 22100
2 | 1050 | 3 | 2 | 85000 | 1410 | 12000
3 | 20 | 3 | 1 | 22500 | 1060 | 3500
4 | 870 | 2 | 2 | 90000 | 1300 | 17500
5 | 1320 | 3 | 2 | 133000 | 1500 | 30000
6 | 1350 | 2 | 1 | 90500 | 820 | 25700
7 | 2790 | 3 | 2.5 | 260000 | 2130 | 25000
8 | 680 | 2 | 1 | 142500 | 1170 | 22000
9 | 1840 | 3 | 2 | 160000 | 1500 | 19000
10 | 3680 | 4 | 2 | 240000 | 2790 | 20000
11 | 1660 | 3 | 1 | 87000 | 1030 | 17500
12 | 1620 | 3 | 2 | 118600 | 1250 | 20000
13 | 3100 | 3 | 2 | 140000 | 1760 | 38000
14 | 2070 | 2 | 3 | 148000 | 1550 | 14000
15 | 650 | 3 | 1.5 | 65000 | 1450 | 12000
\.
预测模型
linregr_train( source_table,
out_table,
dependent_varname,
independent_varname,
grouping_cols, -- 可选
heteroskedasticity_option -- 可选
)
Train a regression model. First, a single regression for all the data.
houses中包含了历史数据,有自变量,有因变量。
其中price是因变量,tax, bath, size是自变量。即三元回归。
houses_linregr存放线性回归的统计值。包括相关性,R2,标准差,P值等。
SELECT madlib.linregr_train( 'houses',
'houses_linregr',
'price',
'ARRAY[1, tax, bath, size]'
);
当需要根据来源数据分组预测时,你可以加入分组字段。
Generate three output models, one for each value of "bedroom".
SELECT madlib.linregr_train( 'houses',
'houses_linregr_bedroom',
'price',
'ARRAY[1, tax, bath, size]',
'bedroom'
);
Examine the resulting models.
-- Set extended display on for easier reading of output
\x ON
SELECT * FROM houses_linregr;
Result:
-[ RECORD 1 ]+---------------------------------------------------------------------------
coef | {-12849.4168959872,28.9613922651765,10181.6290712648,50.516894915354}
r2 | 0.768577580597443
std_err | {33453.0344331391,15.8992104963997,19437.7710925923,32.928023174087}
t_stats | {-0.38410317968819,1.82156166004184,0.523806408809133,1.53416118083605}
p_values | {0.708223134615422,0.0958005827189772,0.610804093526536,0.153235085548186}
condition_no | 9002.50457085737
这个r2只有0.76,相关性不太好,所以依旧需要用我之前提到的方法来获得好的相关性,即动态数据段计算。
View the results grouped by bedroom.
SELECT * FROM houses_linregr_bedroom;
Result:
-[ RECORD 1 ]+--------------------------------------------------------------------------
bedroom | 2
coef | {-84242.0345406597,55.4430144648696,-78966.9753675319,225.611910021192}
r2 | 0.968809546465313
std_err | {35018.9991665742,19.5731125320686,23036.8071292552,49.0448678148784}
t_stats | {-2.40560942761235,2.83261103077151,-3.42786111480046,4.60011251070697}
p_values | {0.250804617665239,0.21605133377602,0.180704400437373,0.136272031474122}
condition_no | 10086.1048721726
-[ RECORD 2 ]+--------------------------------------------------------------------------
bedroom | 4
coef | {0.0112536020318378,41.4132554771633,0.0225072040636757,31.3975496688276}
r2 | 1
std_err | {0,0,0,0}
t_stats | {Infinity,Infinity,Infinity,Infinity}
p_values |
condition_no | Infinity
-[ RECORD 3 ]+--------------------------------------------------------------------------
bedroom | 3
coef | {-88155.8292501601,27.1966436294429,41404.0293363612,62.637521075324}
r2 | 0.841699901311252
std_err | {57867.9999702625,17.8272309154689,43643.1321511114,70.8506824863954}
t_stats | {-1.52339512849005,1.52556747362508,0.948695185143966,0.884077878676067}
p_values | {0.188161432894871,0.187636685729869,0.386340032374927,0.417132778705789}
condition_no | 11722.6225642147
Alternatively you can unnest the results for easier reading of output.
\x OFF
SELECT unnest(ARRAY['intercept','tax','bath','size']) as attribute,
unnest(coef) as coefficient,
unnest(std_err) as standard_error,
unnest(t_stats) as t_stat,
unnest(p_values) as pvalue
FROM houses_linregr;
Use the prediction function to evaluate residuals.
SELECT houses.*,
madlib.linregr_predict( ARRAY[1,tax,bath,size],
m.coef
) as predict,
price -
madlib.linregr_predict( ARRAY[1,tax,bath,size],
m.coef
) as residual
FROM houses, houses_linregr m;
在获得了好的R2之后,就可以拿这组数据预测下一组数据了。