[go 面试] 缓存策略与应对数据库压力的良方

简介: [go 面试] 缓存策略与应对数据库压力的良方

在高并发场景中,缓存是提高系统性能的关键利器。然而,缓存穿透、缓存击穿、缓存雪崩等问题可能会给系统带来严重的负担。本文将深入探讨这些问题,并提供有效的解决办法,使用 Go 语言示例代码。


1. 缓存穿透


1.1 问题描述


缓存穿透是指每次查询都没有命中缓存,导致每次都需要去数据库中查询,可能引起数据库压力剧增。


1.2 解决办法


为不存在的数据设置缓存空值,防止频繁查询数据库。同时,为了健壮性,需要设置这些缓存空值的过期时间,以避免无效的缓存占用内存。


// 示例代码
func queryDataFromCacheOrDB(key string) (string, error) {
    // 查询缓存
    data, err := cache.Get(key)
    if err == nil {
        return data, nil
    }
    // 查询数据库
    data = queryDataFromDB(key)
    // 将数据写入缓存,设置过期时间
    cache.Set(key, data, expirationTime)
    return data, nil
}


2. 缓存击穿


2.1 问题描述


在高并发情况下,大量请求同时查询同一个缓存键,若该缓存刚好失效,将导致同时有大量请求直接访问数据库,增加数据库负载。


2.2 解决办法


采用锁的机制,只有第一个获取锁的线程去请求数据库,并在数据库返回后更新缓存。其他线程在拿到锁后需要重新查询一次缓存,避免重复访问数据库。


// 示例代码
func queryDataWithLock(key string) (string, error) {
    // 尝试获取锁
    if acquireLock(key) {
        defer releaseLock(key)
        // 查询缓存
        data, err := cache.Get(key)
        if err == nil {
            return data, nil
        }
        // 查询数据库
        data = queryDataFromDB(key)
        // 将数据写入缓存,设置过期时间
        cache.Set(key, data, expirationTime)
        return data, nil
    }
    // 获取锁失败,等待一段时间后重试
    time.Sleep(retryInterval)
    return queryDataWithLock(key)
}


3. 缓存雪崩


3.1 问题描述


缓存中大量数据同时失效,导致大量请求直接访问后端数据库,可能引发数据库宕机。


3.2 解决办法


  • 使用集群,减少宕机几率。
  • 限流和降级,保护后端服务。
  • 设置合理的缓存过期时间,分散缓存失效时间。
  • 热点数据预加载,提前刷新缓存。
  • 添加缓存失效的随机性,防止同时失效。
  • 多级缓存,使用本地缓存和分布式缓存。
  • 实时监控和预警,及时发现异常并采取措施。


// 示例代码
func queryDataFromCacheOrDBWithExpiration(key string) (string, error) {
    // 查询缓存
    data, err := cache.Get(key)
    if err == nil {
        return data, nil
    }
    // 查询数据库
    data = queryDataFromDB(key)
    // 将数据写入缓存,设置合理的过期时间
    cache.Set(key, data, calculateExpirationTime())
    return data, nil
}


4. 解决热点数据集中失效的问题


4.1 问题描述


热点数据集中失效时,可能导致大量请求同时访问数据库,引起数据库压力激增。


4.2 解决办法


  • 设置不同的失效时间,分散缓存失效时机。
  • 采用加锁机制,确保只有一个线程更新缓存。
  • 永不失效,通过定时任务对即将失效的缓存进行更新和设置失效时间。
// 示例代码
func queryHotDataFromCacheOrDB(key string) (string, error) {
    // 查询缓存
    data, err := cache.Get(key)
    if err == nil {
        return data, nil
    }
    // 尝试获取锁
    if acquireLock(key) {
        defer releaseLock(key)
        // 重新查询缓存
        data, err := cache.Get(key)
        if err == nil {
            return data, nil
        }
        // 查询数据库
        data = queryDataFromDB(key)
        // 将数据写入缓存,永不失效
        cache.Set(key, data, neverExpire)
        return data, nil
    }
    // 获取锁失败,等待一段时间后重试
    time.Sleep(retryInterval)
    return queryHotDataFromCacheOrDB(key)
}


通过以上策略,可以更好地应对缓存问题,保障系统的稳定性和性能。选择合适的解决方案,取决于具体的业务场景和需求。

相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
1月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
131 6
|
2月前
|
SQL 关系型数据库 MySQL
MySQL数据库连接过多(Too many connections)错误处理策略
综上所述,“Too many connections”错误处理策略涉及从具体参数配置到代码层面再到系统与架构设计全方位考量与改进。每项措施都需根据具体环境进行定制化调整,并且在执行任何变更前建议先行测试评估可能带来影响。
818 11
|
2月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
447 4
|
7月前
|
存储 缓存 数据库
数据库数据删除策略:硬删除vs软删除的最佳实践指南
在项目开发中,“删除”操作常见但方式多样,主要分为硬删除与软删除。硬删除直接从数据库移除数据,操作简单、高效,但不可恢复;适用于临时或敏感数据。软删除通过标记字段保留数据,支持恢复和审计,但增加查询复杂度与数据量;适合需追踪历史或可恢复的场景。两者各有优劣,实际开发中常结合使用以满足不同需求。
561 4
|
3月前
|
缓存 关系型数据库 MySQL
MySQL数据库性能调优:实用技术与策略
通过秉持以上的策略实施具体的优化措施,可以确保MySQL数据库的高效稳定运行。务必结合具体情况,动态调整优化策略,才能充分发挥数据库的性能潜力。
168 0
|
7月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
8月前
|
缓存 NoSQL 关系型数据库
WordPress数据库查询缓存插件
这款插件通过将MySQL查询结果缓存至文件、Redis或Memcached,加速页面加载。它专为未登录用户优化,支持跨页面缓存,不影响其他功能,且可与其他缓存插件兼容。相比传统页面缓存,它仅缓存数据库查询结果,保留动态功能如阅读量更新。提供三种缓存方式选择,有效提升网站性能。
142 1
|
8月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)

热门文章

最新文章