Go 内存分配:结构体中的优化技巧

简介: Go 内存分配:结构体中的优化技巧

使用Golang进行内存分配时,我们需要遵循一系列规则。在深入了解这些规则之前,我们需要先了解变量的对齐方式。


Golang的unsafe包中有一个函数Alignof,签名如下:


func Alignof(x ArbitraryType) uintptr


对于任何类型为v的变量xAlignOf函数会返回该变量的对齐方式。我们将对齐方式记为m。现在,Golang确保m是满足变量x的内存地址 % m == 0的最大可能数,也就是说,变量x的内存地址是m的倍数。


让我们来看看一些数据类型的对齐方式:

  • byte, int8, uint8 -> 1
  • int16, uint16 -> 2
  • int32, uint32, float32, complex64 -> 4
  • int, int64, uint64, float64, complex128 -> 8
  • string, slice -> 8


对于结构体中的字段,行为可能会有所不同,详细信息请参考包的文档。


为了更好地理解结构体内存分配的情况,我们将使用unsafe包中的另一个函数Offsetof。该函数返回字段相对于结构体起始位置的位置,换句话说,它返回字段起始位置与结构体起始位置之间的字节数。


func Offsetof(x ArbitraryType) uintptr


为了更好地理解结构体内存分配,让我们以一个示例结构体为例:


type Example struct {
    a int8
    b string
    c int8
    d int32
}


,我们将找出类型为Example的变量所占用的总内存,并尝试优化分配。


var v = Example{
    a: 10,
    b: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus rhoncus.",
    c: 20,
    d: 100,
}
fmt.Println("字段a的偏移量:", unsafe.Offsetof(v.a)) // 输出:0
fmt.Println("字段b的偏移量:", unsafe.Offsetof(v.b)) // 输出:8
fmt.Println("字段c的偏移量:", unsafe.Offsetof(v.c)) // 输出:24
fmt.Println("字段d的偏移量:", unsafe.Offsetof(v.d)) // 输出:28


,问题出现了:“为什么结构体中字段b的偏移量是8?它应该是1,因为字段a的类型是int8,只占用1个字节。”回到字符串数据类型的对齐方式,它的值为8,这意味着地址需要被8整除,因此在其中插入了7个字节的“填充”,以确保这种行为。


为什么字段c的偏移量是24?字段b中的字符串看起来比16个字节要长得多,如果字符串的偏移量是8,那么字段c的偏移量应该更大一些。


上述问题的答案是,在Go中,字符串并不是在结构体内的同一位置分配内存的。有一个单独的数据结构来保存字符串描述符,并且该字符串描述符以原地方式存储在结构体中,用于类型为string的字段,该描述符的大小为16个字节。


现在,让我们来看看unsafe包中的另一个函数Sizeof。正如其名称所示,该函数估计并返回类型为x的变量所占用的字节数。


注意:它是根据结构体中可能存在的不同大小的字段来估计大小的。


func Sizeof(x ArbitraryType) uintptr


现在,让我们来看看我们的结构体Example的大小。


fmt.Println("Example的大小:", unsafe.Sizeof(v)) // 输出:32


我们如何优化这个结构体以最小化填充呢?


为了优化这个结构体的内存,我们将查看不同数据类型的对齐方式,并尝试减少填充。让我们尝试将两个int8类型的字段放在一起。


type y struct {
    a int8
    c int8
    b string
    d int32
}
var v = y{}
fmt.Println("字段a的偏移量:", unsafe.Offsetof(v.a)) // 输出:0
fmt.Println("字段b的偏移量:", unsafe.Offsetof(v.b)) // 输出:8
fmt.Println("字段c的偏移量:", unsafe.Offsetof(v.c)) // 输出:1
fmt.Println("字段d的偏移量:", unsafe.Offsetof(v.d)) // 输出:24
fmt.Println("Example的大小:", unsafe.Sizeof(v)) // 输出:32


棒了,我们去掉了一些填充,但是为什么大小仍然是32?大小应该是1(a)+ 1(c)+ 6(填充)+ 16(b)+ 4(d)= 28


现在,当结构体的最后一个字段与架构的对齐要求不完全一致时,会在最后一个字段之后添加填充,以确保结构体的整体大小是其字段中最大对齐要求的倍数。因为字符串数据类型的最大对齐方式为8,所以额外添加了填充,使大小成为8的倍数,即在末尾填充了4个字节,使大小为32字节。


我们能否进一步减少填充,使其更加优化?


让我们尝试通过移动字段位置来实现。


type y struct {
    b string
    d int32
    a int8
    c int8
}
var v = y{}
fmt.Println("字段a的偏移量:", unsafe.Offsetof(v.a)) // 输出:20
fmt.Println("字段b的偏移量:", unsafe.Offsetof(v.b)) // 输出:0
fmt.Println("字段c的偏移量:", unsafe.Offsetof(v.c)) // 输出:21
fmt.Println("字段d的偏移量:", unsafe.Offsetof(v.d)) // 输出:16
fmt.Println("Example的大小:", unsafe.Sizeof(v)) // 输出:24


我们可以看到,通过重新排列字段的位置,使得对齐需要最小化填充,我们已经将结构体的大小从32减小到24,这是内存优化的巨大进步,达到了25%。


当前的内存占用是16(b)+ 4(d)+ 1(a)+ 1(b)+ 2(填充)。


遗憾的是,由于语言和架构的限制,我们无法进一步去除填充。

相关文章
|
27天前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
17天前
|
程序员 Go
go语言中结构体(Struct)
go语言中结构体(Struct)
92 71
|
28天前
|
存储 缓存 JavaScript
如何优化Node.js应用的内存使用以提高性能?
通过以上多种方法的综合运用,可以有效地优化 Node.js 应用的内存使用,提高性能,提升用户体验。同时,不断关注内存管理的最新技术和最佳实践,持续改进应用的性能表现。
116 62
|
24天前
|
存储 缓存 监控
如何使用内存监控工具来优化 Node.js 应用的性能
需要注意的是,不同的内存监控工具可能具有不同的功能和特点,在使用时需要根据具体工具的要求和操作指南进行正确使用和分析。
66 31
|
21天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
54 7
|
21天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
46 5
|
1月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
103 13
|
1月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
57 11
|
22天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
52 1
|
1月前
|
编译器 Go
探索 Go 语言中的内存对齐:为什么结构体大小会有所不同?
在 Go 语言中,内存对齐是优化内存访问速度的重要概念。通过调整数据在内存中的位置,编译器确保不同类型的数据能够高效访问。本文通过示例代码展示了两个结构体 `A` 和 `B`,尽管字段相同但排列不同,导致内存占用分别为 40 字节和 48 字节。通过分析内存布局,解释了内存对齐的原因,并提供了优化结构体字段顺序的方法,以减少内存填充,提高性能。
41 3