【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码

简介: 本文总结了2023年第十三届MathorCup高校数学建模挑战赛C题的解题过程,详细阐述了电商物流网络在面临突发事件时的包裹应急调运与结构优化问题,提出了基于时间序列预测、多目标优化、遗传算法和重要性评价模型的综合解决方案,并提供了相应的31页论文和代码实现。

相关信息

(1)建模思路

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建模方案及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现

(2)完整论文

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码

请添加图片描述

1 题目

电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场 地之间的运输线路组成,如图 1 所示。受节假日和“双十一”、“618”等促销活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事 件导致物流场地临时或永久停用时,其处理的包裹将会紧急分流到其他物 流场地,这些因素均会影响到各条线路运输的包裹数量,以及各个物流场 地处理的包裹数量。

在这里插入图片描述

如果能预测各物流场地及线路的包裹数量(以下简称货量),管理者将 可以提前安排运输、分拣等计划,从而降低运营成本,提高运营效率。特别地,在某些场地临时或永久停用时,基于预测结果和各个物流场地的处 理能力及线路的运输能力,设计物流网络调整方案,将会大大降低物流场 地停用对物流网络的影响,保障物流网络的正常运行。

附件 1 给出了某物流网络在 2021-01-01 至 2022-12-31 期间每天不同物流场地之间流转的货量数据,该物流网络有 81 个物流场地,1049 条线路。其中线路是有方向的,比如线路 DC1→DC2 和线路 DC2→DC1 被认为是两条线路。假设每个物流场地的处理能力和每条线路的运输能力上限均为其 历史货量最大值。

基于以上背景,请你们团队完成以下问题:

问题 1:建立线路货量的预测模型,对 2023-01-01 至 2023-01-31 期间 每条线路每天的货量进行预测,并在提交的论文中给出线路 DC14→DC10、DC20→DC35、DC25→DC62 的预测结果。

问题 2:如果物流场地 DC5 于 2023-01-01 开始关停,请在问题 1 的预测基础上,建立数学模型,将 DC5 相关线路的货量分配到其他线路使所有包裹尽可能正常流转,并使得 DC5 关停前后货量发生变化的线路尽可能少, 且保持各条线路的工作负荷尽可能均衡。如果存在部分日期部分货量没有正常流转,你们的分流方案还应使得 2023-01-01 至 2023-01-31 期间未能正常流转的包裹日累计总量尽可能少。正常流转时,请给出因 DC5 关停导致货量发生变化的线路数及网络负荷情况;不能正常流转时,请给出因 DC5 关停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况。

问题 3:在问题 2 中,如果被关停的物流场地为 DC9,同时允许对物流网络结构进行动态调整(每日均可调整),调整措施为关闭或新开线路,不包含新增物流场地,假设新开线路的运输能力的上限为已有线路运输能力的最大值。请将 DC9 相关线路的货量分配到其他线路,使所有包裹尽可能正常流转,并使得 DC9 关停前后货量发生变化的线路数尽可能少,且保持各条线路的工作负荷尽可能均衡。如果存在部分日期没有满足要求的流转方案,你们的分流方案还应使得 2023-01-01 至 2023-01-31 期间未能正常流转的包裹日累计总量尽可能少。正常流转时,请给出因 DC9 关停导致货量发生变化的线路数及网络负荷情况;不能正常流转时,请给出因 DC9 关停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况; 同时请给出每天的线路增减情况。

问题 4:根据附件 1,请对该网络的不同物流场地及线路的重要性进行评价;为了改善网络性能,如果打算新增物流场地及线路,结合问题 1 的预测结果,探讨分析新增物流场地应与哪几个已有物流场地之间新增线路, 新增物流场地的处理能力及新增线路的运输能力应如何设置?考虑到预测结果的随机性,请进一步探讨你们所建网络的鲁棒性。

2 论文介绍

电商物流网络包裹应急调运与结构优化问题

摘要

电商物流网络是指由电商平台、物流企业、消费者等多方参与的物流服务体系,其目的是实现商品的快速、安全、高效的配送。电商物流网络包括了商品的采购、仓储、分拣、运输、派送等环节,涉及了多种运输方式和多级物流节点。然而,电商物流网络也面临着各种不确定性因素的影响,如突发事件、需求波动、交通拥堵等,这些因素可能导致物流网络出现包裹延误、损坏、丢失等问题,影响电商物流的正常运作和消费者的满意度。因此,面对不确定性因素的影响,如何实施电商物流网络的应急调运和结构优化策略,是一个具有重要价值和难度的问题。

针对问题一建立基于时间序列的线路货量预测模型。我们利用各条线路的历史货量数据,采用合适的时间序列分析方法,对2023年1月份每条线路每日的货量进行了预测,并在论文中展示了线路DC14→DC10、DC20→DC35、DC25→DC62的预测结果。

针对问题二建立应急调运优化模型。为了应对物流场地DC5于2023年1月1日的关闭,需要重新分配DC5相关线路的货量到其他线路,以保证包裹的正常流转,并尽量减少线路货量的变化和平衡线路的工作负荷。我们将这个问题建模为一个多目标优化问题,并采用遗传算法进行求解。同时,我们基于Floyd算法对附件1中的货量关系进行了处理,得到了任意两地之间的最优货量矩阵。

针对问题三建立动态调整结构优化模型。在在问题二的基础上,我们考虑了物流场地DC9的关闭,并允许对物流网络结构进行动态调整,以重新分配DC9相关线路的货量到其他线路,以保证包裹的正常流转。我们在问题二的优化模型中引入了物流场地变量,并采用了基于SUE(随机用户均衡)原理的分配方法,定义一个网格G=(N,A),其中N为节点,A为区域, x i j x_{ij} xij​表示区域 ( i , j ) ∈ A (i,j)\in A (i,j)∈A的货量,Nguyen-Dupuis网格 G = ( 13 , 38 ) G = (13,38) G\=(13,38),为了提高运算效率,我们采用了限制迭代次数的方法,即在达到预设的最大迭代次数或满足收敛条件时停止迭代,从而得到分配结果的近似解。

针对问题四建立物流网络重要性评价模型和结构改善方案。根据附件1并结合问题1的预测结果,将所有的场地进行分类判别其重要程度,从0至10划分为十个不同的层次阶段。然后采用AHP法确定各个物流场地和线路的重要性权重,用Fisher判别函数来评估新线路的重要性,并根据重要性模型来确定其运输能力。

关键词:应急调运、时间序列预测、遗传算法、SUE模型、AHP法
在这里插入图片描述

在这里插入图片描述

3 获取方式

查看知乎文章最底部,或者私信我

zhuanlan.zhihu.com/p/626262124

目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
53 3
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
3月前
|
机器学习/深度学习 存储 算法
回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现
本文详细介绍了回声状态网络(Echo State Networks, ESN)的基本概念、优点、缺点、储层计算范式,并提供了ESN的Python代码实现,包括不考虑和考虑超参数的两种ESN实现方式,以及使用ESN进行时间序列预测的示例。
160 4
回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现
|
1月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
33 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
1月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
56 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
68 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
1月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
47 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
1月前
|
运维 网络安全 数据安全/隐私保护
2024高校网络安全管理运维赛题目--复现+题目+wp
2024高校网络安全管理运维赛题目--复现+题目+wp
46 2
|
2月前
|
机器学习/深度学习 自然语言处理 搜索推荐
基于图神经网络的电商购买预测
基于图神经网络的电商购买预测
|
2月前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码