2023年美赛C题Wordle预测问题一建模及Python代码详细讲解

简介: 本文通过Python代码详细讲解了2023年美赛C题Wordle预测问题一的建模过程,包括数据预处理、特征工程、相关性分析以及线性回归模型的应用。

在这里插入图片描述

相关链接

(1)2023年美赛C题Wordle预测问题一建模及Python代码详细讲解
(2)2023年美赛C题Wordle预测问题二建模及Python代码详细讲解
(3)2023年美赛C题Wordle预测问题三、四建模及Python代码详细讲解
(4)2023年美赛C题Wordle预测问题27中文页论文

C题:Wordle预测

代码运行环境
编译器:vsCode
编程语言:Python
如果要运行代码,出现错误了,不要着急,百度一下错误,一般都是哪个包没有安装,用conda命令或者pip命令都能安装上。

1、问题一

1.1 第一小问

第一小问,建立一个时间序列预测模型,首先对数据按先后顺序排序,查看数据分布

import pandas as pd
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from  scipy.stats import skew,kurtosis

pd.options.display.notebook_repr_html=False  # 表格显示
plt.rcParams['figure.dpi'] = 75  # 图形分辨率
sns.set_theme(style='darkgrid')  # 图形主题

df = pd.read_excel('data/Problem_C_Data_Wordle.xlsx',header=1)
data = df.drop(columns='Unnamed: 0')
data['Date'] = pd.to_datetime(data['Date'])
data.set_index("Date", inplace=True)
data.sort_index(ascending=True,inplace=True)
data

在这里插入图片描述

(1)查看数据分布


sns.lineplot(x="Date", y="Number of  reported results",data=data)
plt.savefig('img/1.png',dpi=300)
plt.show()

在这里插入图片描述

(2)使用箱线图进行查看异常值,300000以上是异常值,黑色的,需要进行处理,本代码中采用的向前填充法,就是用异常值前一天的数据来填充。

sns.boxplot(data['Number of  reported results'],color='red')
plt.savefig('img/2.png',dpi=300)

在这里插入图片描述

(3)因为Number of reported results是数值特征,在线性回归模型中,为了取得更好的建模效果,在建立回归评估模型之前,应该检查确认样本的分布,如果符合正态分布,则这种训练集是及其理想的,否则应该补充完善训练集或者通过技术手段对训练集进行优化。由KDE图和Q-Q图可知,价格属性呈右偏分布且不服从正态部分,在回归之前需要对数据进一步数据转换。

import scipy.stats as st
plt.figure(figsize=(20, 6))
y = data.Numbers
plt.subplot(121)
plt.title('johnsonsu Distribution fitting',fontsize=20)
sns.distplot(y, kde=False, fit=st.johnsonsu, color='Red')

y2 = data.Numbers
plt.subplot(122)
st.probplot(y2, dist="norm", plot=plt)
plt.title('Q-Q Figure',fontsize=20)
plt.xlabel('X quantile',fontsize=15)
plt.ylabel('Y quantile',fontsize=15)
plt.savefig('img/5.png',dpi=300)
plt.show()

转换前

在这里插入图片描述

转换后,注意,预测得到的结果,还要转换回来,采用指数转换。公式是log(x) =y,x=e^y。

import scipy.stats as st
plt.figure(figsize=(20, 6))
y = np.log(data.Numbers)
plt.subplot(121)
plt.title('johnsonsu Distribution fitting',fontsize=20)
sns.distplot(y, kde=False, fit=st.johnsonsu, color='Red')

y2 = np.log(data.Numbers)
plt.subplot(122)
st.probplot(y2, dist="norm", plot=plt)
plt.title('Q-Q Figure',fontsize=20)
plt.xlabel('X quantile',fontsize=15)
plt.ylabel('Y quantile',fontsize=15)
plt.savefig('img/6.png',dpi=300)
plt.show()

在这里插入图片描述

(4)可视化所有特征与label的相关性,采用皮尔逊相关性方法,筛选相关性较高作为数据集的特征。得到41个特征。

# 可视化Top20相关性最高的特征
df =data.copy()
corr = df[["target_t1"]+features].corr().abs()
k = 15
col =  corr.nlargest(k,'target_t1')['target_t1'].index
plt.subplots(figsize = (10,10))
plt.title("Pearson correlation with label")
sns.heatmap(df[col].corr(),annot=True,square=True,annot_kws={"size":14},cmap="YlGnBu")
plt.savefig('img/10.png',dpi=300)
plt.show()

在这里插入图片描述

(5)划分数据集前,需要标准化特征数据,标准化后,将1-11月的数据作为训练集,12月的数据作为测试集。可以看到用简单线性回归可以拟合曲线。

data_feateng = df[features + targets].dropna()
nobs= len(data_feateng)
print("样本数量: ", nobs)
X_train = data_feateng.loc["2022-1":"2022-11"][features]
y_train = data_feateng.loc["2022-1":"2022-11"][targets]

X_test = data_feateng.loc["2022-12"][features]
y_test = data_feateng.loc["2022-12"][targets]

n, k = X_train.shape
print("Train: {}{}, \nTest: {}{}".format(X_train.shape, y_train.shape,
                                              X_test.shape, y_test.shape))

plt.plot(y_train.index, y_train.target_t1.values, label="train")
plt.plot(y_test.index, y_test.target_t1.values, label="test")
plt.title("Train/Test split")
plt.legend()
plt.xticks(rotation=45)
plt.savefig('img/11.png',dpi=300)
plt.show()

在这里插入图片描述

(5)采用线性回归

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

X_train = data_feateng.loc["2022-1":"2022-11"][features]
y_train = data_feateng.loc["2022-1":"2022-11"][targets]

X_test = data_feateng.loc["2022-12"][features]
y_test = data_feateng.loc["2022-12"][targets]
reg = LinearRegression().fit(X_train, y_train["target_t1"])
p_train = reg.predict(X_train)
p_test = reg.predict(X_test)

y_pred = np.exp(p_test*std+mean)
y_true = np.exp(y_test["target_t1"]*std+mean)

RMSE_test = np.sqrt(mean_squared_error(y_true,y_pred))
print("Test RMSE: {}".format(RMSE_test))

模型误差是RMSE: 1992.293296317915

模型训练和预测

from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X_train, y_train["target_t1"])
p_train = reg.predict(X_train)
arr = np.array(X_test).reshape((1,-1))
p_test = reg.predict(arr)

y_pred = np.exp(p_test*std+mean)
print(f"预测区间是[{int(y_pred-RMSE_test)}至{int(y_pred+int(RMSE_test))}]")

在这里插入图片描述

预测得到的结果减去误差,得到预测区间的左边界,加上误差,得到预测区间的右边界。最后得出的预测区间是【18578-22562】

1.2 第二小问

我提取了每个单词中每个字母位置的特征(如a编码为1,b编码为2,c编码为3依次类推,z编码为26,那5个单词的位置就填入相应的数值,类似于ont-hot编码)、元音的字母的频率(五个单词中元音字母出现了几次),辅音字母的频率(5个单词中辅音字母出现了几次),还有一个是单词的词性(形容词,副词,名词等等,这部分没有做)

特征在代码中未这几个:‘w1’,‘w2’,‘w3’,‘w4’,‘w5’,‘Vowel_fre’,‘Consonant_fre’

然后分别计算1-7次尝试百分比与这几个特征的相关性,采用皮尔逊相关性方法。同学们,继续对图片中的数值进行解读,应用到论文中,可以用表格阐述。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_excel('data/Problem_C_Data_Wordle.xlsx',header=1)
data = df.drop(columns='Unnamed: 0')
data['Date'] = pd.to_datetime(data['Date'])
df.set_index('Date',inplace=True)
df.sort_index(ascending=True,inplace=True)
df =data.copy()
df['Words']  = df['Word'].apply(lambda x:str(list(x))[1:-1].replace("'","").replace(" ",""))
df['w1'], df['w2'],df['w3'], df['w4'],df['w5'] = df['Words'].str.split(',',n=4).str
df

在这里插入图片描述

small = [str(chr(i)) for i in range(ord('a'),ord('z')+1)]
letter_map = dict(zip(small,range(1,27)))
letter_map

{‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4, ‘e’: 5, ‘f’: 6, ‘g’: 7, ‘h’: 8, ‘i’: 9, ‘j’: 10, ‘k’: 11, ‘l’: 12, ‘m’: 13, ‘n’: 14, ‘o’: 15, ‘p’: 16, ‘q’: 17, ‘r’: 18, ‘s’: 19, ‘t’: 20, ‘u’: 21, ‘v’: 22, ‘w’: 23, ‘x’: 24, ‘y’: 25, ‘z’: 26}

df['w1'] = df['w1'].map(letter_map)
df['w2'] = df['w2'].map(letter_map)
df['w3'] = df['w3'].map(letter_map) 
df['w4'] = df['w4'].map(letter_map)
df['w5'] = df['w5'].map(letter_map)
df

在这里插入图片描述

(1)统计元音辅音频率

Vowel = ['a','e','i','o','u'] 
Consonant = list(set(small).difference(set(Vowel)))
def count_Vowel(s):
    c = 0
    for i in range(len(s)):
        if s[i] in Vowel:
            c+=1
    return c
def count_Consonant(s):
    c = 0
    for i in range(len(s)):
        if s[i] in Consonant:
            c+=1
    return c

df['Vowel_fre'] = df['Word'].apply(lambda x:count_Vowel(x)) 
df['Consonant_fre'] = df['Word'].apply(lambda x:count_Consonant(x)) 
df

在这里插入图片描述

(2)分析相关性

# 可视化Top20相关性最高的特征
features = ['w1','w2','w3','w4','w5','Vowel_fre','Consonant_fre']
label = ['1 try','6 tries','6 tries','6 tries','6 tries','6 tries','7 or more tries (X)']
n = 11
for i in label:
    corr = df[[i]+features].corr().abs()
    k = len(features)
    col =  corr.nlargest(k,i)[i].index
    plt.subplots(figsize = (10,10))
    plt.title(f"Pearson correlation with {i}")
    sns.heatmap(df[col].corr(),annot=True,square=True,annot_kws={"size":14},cmap="YlGnBu")
    plt.savefig(f'img/1/{n}.png',dpi=300)
    n+=1
    plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Code

Code获取,在浏览器中输入:betterbench.top/#/40/detail,或者Si我

剩下的问题二、三、四代码实现,在我主页查看,陆续发布出来。

目录
相关文章
|
21天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
28 6
|
12天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
58 15
|
14天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
57 8
|
22天前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
44 11
|
23天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
35 11
|
19天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
20天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
44 6
|
24天前
|
Python
如何提高Python代码的可读性?
如何提高Python代码的可读性?
38 4
|
24天前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。
|
28天前
|
设计模式 监控 程序员
Python中的装饰器:功能增强与代码复用的利器####
本文深入探讨了Python中装饰器的工作原理、应用场景及其在提升代码可读性、减少重复劳动方面的优势。不同于传统方法的冗长和复杂,装饰器提供了一种优雅且高效的方式来增强函数或方法的功能。通过具体实例,我们将揭示装饰器如何简化错误处理、日志记录及性能监控等常见任务,使开发者能够专注于核心业务逻辑的实现。 ####