大数据技术:内包还是外包

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

对于零售商来说,大数据是一把双刃剑。这些公司正在努力探索全方位的市场竞争,因为他们试图抵御像亚马逊公司这样的行业巨头,一些公司正在将大量资源部署到开发自己的大数据解决方案中,以试图与零售巨头进行竞争。

零售商面临的一个问题是他们需要内部构建还是应该将其外包给供应商。

随着软件即服务(SaaS)模式的普及,在企业环境中部署新的解决方案变得越来越简单和快速。这自然会导致行业不断增长的创新,因为传统的解决方案在短短几个星期内就容易被更新颖,更有效的解决方案所替代。

同时,大型零售商希望在公司内部开发解决方案的愿望,就像亚马逊在内部技术上投入大量资金,自己开发很多产品。然而,重要的是要意识到,并不是所有的产品和解决方案都可以或应该在内部建设。零售商应将基础设施视为数据平台,供应商以同样的方式进行创新,MAC和Android平台允许个别开发人员通过应用程序进行创新。

人们相信,云计算算法将在未来几年成为最常见的SaaS应用程序。把算法作为“核心竞争力”并将其发展局限于内部团队的零售商,只会扼杀技术创新,从长远来后将会落后。在这里列出其原因。

成本

伟大的算法解决方案需要核心人才。这些人才的竞争是十分激烈的,特别是数据科学。数据科学家通常具有计算机科学,统计学或数学方面的博士学位,其薪资超过15万美元。

由于市场上优秀的工程师和数据科学家的供应有限,这些工程师更多的是应聘初创公司或亚马逊,Google和Facebook等技术巨头的职位。不幸的是,大多数实体和在线零售商并不会成为顶尖工程师的目的地。因此,零售商必须通过支付更高薪金来弥补。

通过简单的数学计算表明,一个由20位数据科学家和工程师的团队可以将会让零售商每年花费400万美元的费用。而这只是招聘人才的费用,并没有包括来支持解决方案开发的任何基础设施的投资。相比之下,典型的SaaS解决方案每年的价格将低于100万美元(这可能是绝对的上限,传统的费用将低于50万美元)。通过与供应商合作,零售商可以节省大量的成本。

快速上市和灵活性

对于任何技术初创企业来说,快速推出市场是确定整体成功的关键。这包括内部技术的发展。从项目开始到启动,成功创建一个大数据解决方案可能需要2-3年的时间。虽然需要立即获得解决方案是一个亟待解决的问题,但技术的生命周期并不能绕过。两年的等待时间可能会造成一两个问题:公司新开发的解决方案在启动时几乎已经过时,或者试图领先于快速发展的技术环境,陷入无休止的重新设计周期中。

同时,随着基于云计算的SaaS模式的广泛应用,第三方解决方案的集成和部署速度从未如此快速。有些可以在短短的20天内集成和部署,这意味着尖端技术不断改进(算法在世界上最大的零售商不断优化和调整),快速满足即时需求。更重要的是,第三方供应商还提供了内部构建系统不具备的灵活性。删除和替换第三方SaaS解决方案非常简单,而不用担心昂贵的成本和内部斗争。

创新

技术和算法的进步非常快。纵观历史,竞争在创新中起着至关重要的作用。SaaS模型使其既易于部署又易于更换解决方案。因此,供应商正在不断创新,并面临改进的压力。当拥有内部团队,这个选择已经做出,因此没有竞争。一旦构建和部署解决方案,团队的目标就是维护和改进解决方案。但人们绝对不会知道内部团队的解决方案是否具有市场竞争力。

通过与第三方SaaS供应商合作,零售商能够在短时间内评估和部署许多尖端解决方案,同时投资更少。许多其他零售商都在使用这些解决方案,供应商经过不断的审查,得到客户的创新和改进。试图在内部构建这些解决方案不仅成本高昂而且进度缓慢,而且最重要的是限制创新,从而使企业的业务从长远来看并不那么灵活。

这并不意味着零售商应该将所有技术完全外包给供应商。当人们在大数据的背景下谈论技术时,它们指的是存储和处理数据的基础设施,以及解释数据和做出预测的算法。基础架构包括以安全,隐私保护的方式存储全方位的客户数据,如购买的优惠券,并使支持应用程序可访问该数据。

算法是基础设施之上的有效应用,利用数据来进行需求预测,流失预测,动态定价或产品个性化和定位。它们建立在数据基础之上,与操作系统之上的应用程序相同。因此,零售商必须投入内部资源和大量时间来建立安全,高效和可扩展的基础架构。

具有外部API和安全性(敏感数据加密)的正确基础设施将使企业能够利用供应商的尖端技术,不断创新。这将使企业将注意力和专业知识集中在核心业务功能上,而不是试图成为无关领域的专家。对于任何企业来说,资金,时间和研发能力都是有限的。成功的企业知道如何将这些资源放在正确的地方来获得成功。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
运维 数据挖掘 Windows
服务器数据恢复-服务器硬盘指示灯黄色灯常亮的数据恢复案例
某品牌机架式服务器,7块SAS接口硬盘搭建raid5磁盘阵列,Windows操作系统。 服务器上有一块硬盘指示灯的黄灯常亮,随后这块硬盘被raid5阵列踢出,raid阵列崩溃。
|
运维 分布式计算 DataWorks
阿里云大数据ACP(一)大数据开发平台 DataWorks 1
阿里云大数据ACP(一)大数据开发平台 DataWorks 1
1708 0
阿里云大数据ACP(一)大数据开发平台 DataWorks 1
|
存储 分布式计算 安全
分布式文件系统介绍与minio介绍与使用(附minio java client 使用)(一)
分布式文件系统介绍与minio介绍与使用(附minio java client 使用)
742 0
|
11月前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
656 97
|
人工智能 自然语言处理 API
ModelScope是什么
【9月更文挑战第1天】ModelScope是什么
2256 2
|
弹性计算 人工智能 自然语言处理
诚云科技招聘进行中!
诚云科技招聘进行中!
3609 2
|
存储 弹性计算 人工智能
阿里云Alex Chen:普惠计算服务,助力企业创新
本文整理自阿里云弹性计算产品线、存储产品线产品负责人陈起鲲(Alex Chen)在2024云栖大会「弹性计算专场-普惠计算服务,助力企业创新」中的分享。在演讲中,他分享了阿里云弹性计算,如何帮助千行百业的客户在多样化的业务环境和不同的计算能力需求下,实现了成本降低和效率提升的实际案例。同时,基于全面升级的CIPU2.0技术,弹性计算全线产品的性能、稳定性等关键指标得到了全面升级。此外,他还宣布了弹性计算包括:通用计算、加速计算和容器计算的全新产品家族,旨在加速AI与云计算的融合,推动客户的业务创新。
107181 10
|
机器学习/深度学习 Kubernetes 云计算
技术文档工程师和技术翻译
- 阿里云智能集团招聘技术岗,位于杭州和北京。 - 技术文档工程师岗位要求包括独立编写代码能力、快速学习新技术、简化复杂技术概念、扎实的技术理解和良好的时间管理。 - 翻译工程师还需具备相关学历背景、技术翻译经验和云产品知识。 **团队成员分享:** - 昱心(南洋理工大学,机器学习)和骞腾(UIUC,计算机科学)分享了他们在技术文档岗位上的成长,涉及大模型和K8S等技术。 - 舟预(北京交通大学,信息管理)强调技术文档的重要性,认为它是阿里云对外的权威发言人。 - 天蒙(南开大学,信息与通信工程)提到工作中与代码的紧密联系,团队支持技术成长。
24347 24
技术文档工程师和技术翻译
|
SQL 存储 NoSQL
从SQL到NoSQL:理解不同数据库类型的选择与应用——深入比较数据模型、扩展性、查询语言、一致性和适用场景,为数据存储提供全面决策指南
【8月更文挑战第31天】在信息技术飞速发展的今天,数据库的选择至关重要。传统的SQL数据库因其稳定的事务性和强大的查询能力被广泛应用,而NoSQL数据库则凭借其灵活性和水平扩展性受到关注。本文对比了两种数据库类型的特点,帮助开发者根据应用场景做出合理选择。SQL数据库遵循关系模型,适合处理结构化数据和复杂查询;NoSQL数据库支持多种数据模型,适用于非结构化或半结构化数据。SQL数据库在一致性方面表现优异,但扩展性较差;NoSQL数据库则设计之初便考虑了水平扩展性。SQL使用成熟的SQL语言,NoSQL的查询语言更为灵活。
354 0