使用containerlab搭建cilium BGP环境解析

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
全局流量管理 GTM,标准版 1个月
简介: 使用containerlab搭建cilium BGP环境解析

使用 Containerlab + Kind 快速部署 Cilium BGP 环境一文中使用Containerlab和Cilium实现了模拟环境下的Cilium BGP网络。它使用Containerlab模拟外部BGP路由器,使用Cilium BGP的CiliumBGPPeeringPolicy与外部路由器建立BGP关系。

containerLab的简单用法

containerLab支持很多节点类型设置,相对比较复杂。实际使用中只需要掌握基本的组网即可

安装

网络布线

如果没有指定网络模式,则使用默认的bridge

container mode用于于其他容器共享网络命名空间

my-node:
kind: linux
sidecar-node:
kind: linux
network-mode: container:my-node #my-node为另一个容器
startup-delay: 10
name: srl02
topology:
kinds:
srl:
type: ixrd3 #srlinux支持的类型,用于模拟硬件
image: ghcr.io/nokia/srlinux #使用的容器镜像
nodes:
srl1: #节点1信息
kind: srl
srl2: #节点2信息
kind: srl
links:
- endpoints: ["srl1:e1-1", "srl2:e1-1"] #节点1和节点2的点对点连接信息

上述配置包含两个SR Linux节点srl1srl2,它们通过以下两种方式互通:

  1. 都通过接口mgmt连接到了默认的容器网桥clab(使用docker network ls查看)
  2. 通过接口e1-1进行了点到点连接。点到点连接是通过一对veth实现的。enpoints描述了一对veth,因此数组中有且只能有2个元素

执行如下命令部署网络:

# containerlab deploy -t srl02.clab.yml

生成的容器网络如下:

IPv4: subnet 172.20.20.0/24, gateway 172.20.20.1
IPv6: subnet 2001:172:20:20::/64, gateway 2001:172:20:20::1

配置管理网络

用户自定义网络

一般情况下使用默认默认配置即可,但如果默认的网络于现有网络出现冲突,则可以手动指定网段:

mgmt:
network: custom_mgmt                # management network name
ipv4_subnet: 172.100.100.0/24       # ipv4 range
ipv6_subnet: 2001:172:100:100::/80  # ipv6 range (optional)
topology:
# the rest of the file is omitted for brevity

可以手动给节点指定特定IP,相当于静态IP,但此时需要给所有容器手动指定IP:

mgmt:
network: fixedips #指定容器网络名称(默认的容器网络名称为clab)
bridge: mybridge #指定网桥名称(默认的网桥名称为 br-<network-id>)
ipv4_subnet: 172.100.100.0/24
ipv6_subnet: 2001:172:100:100::/80
topology:
nodes:
n1:
kind: srl
mgmt_ipv4: 172.100.100.11       # set ipv4 address on management network
mgmt_ipv6: 2001:172:100:100::11 # set ipv6 address on management network
查看拓扑图

执行如下命令可以查看拓扑图:

# containerlab graph -t srl02.clab.yml

重新配置网络

如果修改了配置文件可以使用如下命令重新配置网络:

# containerlab deploy -t srl02.clab.yml --reconfigure

例子

官方给出了很多配置组网的例子。组网中一般涉及两种实例:VM和路由器,后者可以使用FRR组件模拟。

原文配置解析

Kubernetes配置

下面使用kind创建了一个kubernetes集群,其中包含一个控制节点和3个工作节点,并分配和节点IP和pod网段。

注意配置中禁用了默认的CNI,因此使用kind部署之后,节点之间由于无法通信而不会Ready

# cluster.yaml
kind: Cluster
name: clab-bgp-cplane-demo
apiVersion: kind.x-k8s.io/v1alpha4
networking:
disableDefaultCNI: true # 禁用默认 CNI
podSubnet: "10.1.0.0/16" # Pod CIDR
nodes:
- role: control-plane # 节点角色
kubeadmConfigPatches:
- |
    kind: InitConfiguration
    nodeRegistration:
      kubeletExtraArgs:
        node-ip: 10.0.1.2 # 节点 IP
        node-labels: "rack=rack0" # 节点标签
 
- role: worker
kubeadmConfigPatches:
- |
    kind: JoinConfiguration
    nodeRegistration:
      kubeletExtraArgs:
        node-ip: 10.0.2.2
        node-labels: "rack=rack0"
 
- role: worker
kubeadmConfigPatches:
- |
    kind: JoinConfiguration
    nodeRegistration:
      kubeletExtraArgs:
        node-ip: 10.0.3.2
        node-labels: "rack=rack1"
 
- role: worker
kubeadmConfigPatches:
- |
    kind: JoinConfiguration
    nodeRegistration:
      kubeletExtraArgs:
        node-ip: 10.0.4.2
        node-labels: "rack=rack1"

Cilium安装

原文中的验证步骤可能不大合理,应该是先启动kubernetes和cilium,然后再启动containerlab,否则kubernetes因为没有CNI,也无法生成路由。

# values.yaml
tunnel: disabled
ipam:
mode: kubernetes
ipv4NativeRoutingCIDR: 10.0.0.0/8
# 开启 BGP 功能支持,等同于命令行执行 --enable-bgp-control-plane=true
bgpControlPlane:
enabled: true
k8s:
requireIPv4PodCIDR: true
helm repo add cilium https://helm.cilium.io/
helm install -n kube-system cilium cilium/cilium --version v1.12.1 -f values.yaml

完成上述配置之后kubernetes集群就启动了,节点也Ready了,下面进行BGP的配置。

BPG配置

原文中使用frrouting/frr:v8.2.2镜像来实现BGP路由发现。更多参数配置可以参见官方手册。文中的containerlab的topo文件如下:

# topo.yaml
name: bgp-cplane-demo
topology:
kinds:
linux:
cmd: bash
nodes:
router0:
kind: linux
image: frrouting/frr:v8.2.2
labels:
app: frr
exec:
- iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
- ip addr add 10.0.0.0/32 dev lo
- ip route add blackhole 10.0.0.0/8
- touch /etc/frr/vtysh.conf
- sed -i -e 's/bgpd=no/bgpd=yes/g' /etc/frr/daemons
- usr/lib/frr/frrinit.sh start
- >-
         vtysh -c 'conf t'
         -c 'router bgp 65000'
         -c ' bgp router-id 10.0.0.0'
         -c ' no bgp ebgp-requires-policy'
         -c ' neighbor ROUTERS peer-group'
         -c ' neighbor ROUTERS remote-as external'
         -c ' neighbor ROUTERS default-originate'
         -c ' neighbor net0 interface peer-group ROUTERS'
         -c ' neighbor net1 interface peer-group ROUTERS'
         -c ' address-family ipv4 unicast'
         -c '   redistribute connected'
         -c ' exit-address-family'
         -c '!'
            
     tor0:
kind: linux
image: frrouting/frr:v8.2.2
labels:
app: frr
exec:
- ip link del eth0
- ip addr add 10.0.0.1/32 dev lo
- ip addr add 10.0.1.1/24 dev net1
- ip addr add 10.0.2.1/24 dev net2
- touch /etc/frr/vtysh.conf
- sed -i -e 's/bgpd=no/bgpd=yes/g' /etc/frr/daemons
- /usr/lib/frr/frrinit.sh start
- >-
         vtysh -c 'conf t'
         -c 'frr defaults datacenter'
         -c 'router bgp 65010'
         -c ' bgp router-id 10.0.0.1'
         -c ' no bgp ebgp-requires-policy'
         -c ' neighbor ROUTERS peer-group'
         -c ' neighbor ROUTERS remote-as external'
         -c ' neighbor SERVERS peer-group'
         -c ' neighbor SERVERS remote-as internal'
         -c ' neighbor net0 interface peer-group ROUTERS'
         -c ' neighbor 10.0.1.2 peer-group SERVERS'
         -c ' neighbor 10.0.2.2 peer-group SERVERS'
         -c ' address-family ipv4 unicast'
         -c '   redistribute connected'
         -c '  exit-address-family'
         -c '!'
          
     tor1:
kind: linux
image: frrouting/frr:v8.2.2
labels:
app: frr
exec:
- ip link del eth0
- ip addr add 10.0.0.2/32 dev lo
- ip addr add 10.0.3.1/24 dev net1
- ip addr add 10.0.4.1/24 dev net2
- touch /etc/frr/vtysh.conf
- sed -i -e 's/bgpd=no/bgpd=yes/g' /etc/frr/daemons
- /usr/lib/frr/frrinit.sh start
- >-
         vtysh -c 'conf t'
         -c 'frr defaults datacenter'
         -c 'router bgp 65011'
         -c ' bgp router-id 10.0.0.2'
         -c ' no bgp ebgp-requires-policy'
         -c ' neighbor ROUTERS peer-group'
         -c ' neighbor ROUTERS remote-as external'
         -c ' neighbor SERVERS peer-group'
         -c ' neighbor SERVERS remote-as internal'
         -c ' neighbor net0 interface peer-group ROUTERS'
         -c ' neighbor 10.0.3.2 peer-group SERVERS'
         -c ' neighbor 10.0.4.2 peer-group SERVERS'
         -c ' address-family ipv4 unicast'
         -c '   redistribute connected'
         -c '  exit-address-family'
         -c '!'      
 
server0:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:control-plane
exec:
- ip addr add 10.0.1.2/24 dev net0
- ip route replace default via 10.0.1.1
server1:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:worker
exec:
- ip addr add 10.0.2.2/24 dev net0
- ip route replace default via 10.0.2.1
server2:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:worker2
exec:
- ip addr add 10.0.3.2/24 dev net0
- ip route replace default via 10.0.3.1
server3:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:worker3
exec:
- ip addr add 10.0.4.2/24 dev net0
- ip route replace default via 10.0.4.1
links:
- endpoints: ["router0:net0", "tor0:net0"]
- endpoints: ["router0:net1", "tor1:net0"]
- endpoints: ["tor0:net1", "server0:net0"]
- endpoints: ["tor0:net2", "server1:net0"]
- endpoints: ["tor1:net1", "server2:net0"]
- endpoints: ["tor1:net2", "server3:net0"]

该topo中涉及3个路由器:router0、tor0、tor1,以及4个普通节点:server0、server1、server2、server3,这4个节点与kubernetes的节点(容器部署)共享相同的网络命名空间。上述配置会让路由器启用BGP功能,并与4个普通节点建立网络连接。


下面看下各个节点是如何配置的。

router0的配置

下面是router0的bgp配置,其地址为10.0.0.0

vtysh -c 'conf t'
         -c 'router bgp 65000'
         -c ' bgp router-id 10.0.0.0'
         -c ' no bgp ebgp-requires-policy'
         -c ' neighbor ROUTERS peer-group'
         -c ' neighbor ROUTERS remote-as external'
         -c ' neighbor ROUTERS default-originate'
         -c ' neighbor net0 interface peer-group ROUTERS'
         -c ' neighbor net1 interface peer-group ROUTERS'
         -c ' address-family ipv4 unicast'
         -c '   redistribute connected'
         -c ' exit-address-family'
         -c '!'
  • vtysh -c 'conf t':通过vtysh命令进入交互界面,然后进入配置界面
  • 'router bgp 65000':配置BGP路由器的ASN(AS number),BGP协议使用该数值来判断BGP连接的是内部还是外部。输入该命令之后就可以执行BGP命令。
  • 'bgp router-id 10.0.0.0':指定router-ID,用于标识路由器。此处使用IP作为路由标识
  • 'no bgp ebgp-requires-policy':不需要使用策略来交换路由信息。
  • 'neighbor ROUTERS peer-group':定义一个peer group,用于交换路由,一个peer group中可以有多个peer
  • 'neighbor ROUTERS remote-as external':router0的邻居为tor0和tor1,它们都使用不同的ASN,因此将tor0和tor1作为EBGP,EBGP会在传播路由的时候修改下一跳。参考:EBGP vs IBGP
  • 'neighbor ROUTERS default-originate':将默认路由0.0.0.0发送给邻居。
  • 'neighbor net0 interface peer-group ROUTERS'/'neighbor net0 interface peer-group ROUTERS':将对端绑定到一个peer group。这里的对端可以是接口名称或是邻居标签
  • 'address-family ipv4 unicast':进入IPv4单播配置界面
  • 'redistribute connected':将路由从其他协议重新分发到BGP,此处为系统的直连路由。
  • 'exit-address-family':退出地址族配置。

上述配置中,为router0添加了邻居net0(连接到tor0)和net1(连接到tor1),并在BGP中引入了ipv4的直连路由。此时组网如下:

tor0配置
vtysh -c 'conf t'
         -c 'frr defaults datacenter'
         -c 'router bgp 65010'
         -c ' bgp router-id 10.0.0.1'
         -c ' no bgp ebgp-requires-policy'
         -c ' neighbor ROUTERS peer-group'
         -c ' neighbor ROUTERS remote-as external'
         -c ' neighbor SERVERS peer-group'
         -c ' neighbor SERVERS remote-as internal'
         -c ' neighbor net0 interface peer-group ROUTERS'
         -c ' neighbor 10.0.1.2 peer-group SERVERS'
         -c ' neighbor 10.0.2.2 peer-group SERVERS'
         -c ' address-family ipv4 unicast'
         -c '   redistribute connected'
         -c '  exit-address-family'

此处配置与router0大体相同,它同样创建了一个EBGP类型的peer group ROUTERS,将net0(连接到router0)作为邻居。同时它创建一个IBGP类型的peer group SERVERS,并将server0server1的地址作为邻居。


tor1tor0的配置类似,此处不再详述。最后的组网如下。其中tor0tor1router0建立了邻居关系。另外需要注意的是,containerlab网络中的server0~3分别与kubernetes的对应节点共享网络命名空间。

router0上查看bgp邻居关系,可以看到router0tor0(net0)、tor1(net1)建立了邻居关系:

router0# show bgp summary
IPv4 Unicast Summary (VRF default):
BGP router identifier 10.0.0.0, local AS number 65000 vrf-id 0
BGP table version 8
RIB entries 15, using 2760 bytes of memory
Peers 2, using 1433 KiB of memory
Peer groups 1, using 64 bytes of memory
Neighbor        V         AS   MsgRcvd   MsgSent   TblVer  InQ OutQ  Up/Down State/PfxRcd   PfxSnt Desc
net0            4      65010        15        15        0    0    0 00:00:20            3        9 N/A
net1            4      65011        15        15        0    0    0 00:00:20            3        9 N/A
Total number of neighbors 2

tor0上查看邻居关系,可以看到,tor0并没有与kubernetes节点建立邻居关系,因此无法获取kubernetes pod节点的路由信息。

tor0# show bgp summary
IPv4 Unicast Summary (VRF default):
BGP router identifier 10.0.0.1, local AS number 65010 vrf-id 0
BGP table version 9
RIB entries 15, using 2760 bytes of memory
Peers 3, using 2149 KiB of memory
Peer groups 2, using 128 bytes of memory
Neighbor        V         AS   MsgRcvd   MsgSent   TblVer  InQ OutQ  Up/Down State/PfxRcd   PfxSnt Desc
router0(net0)   4      65000        19        20        0    0    0 00:00:33            6        9 N/A
10.0.1.2        4          0         0         0        0    0    0    never       Active        0 N/A
10.0.2.2        4          0         0         0        0    0    0    never       Active        0 N/
Total number of neighbors 3

router0上查看bgp发现的路由,可以看到不存在pod网段(10.1.0.0/16)的路由

router0# show bgp ipv4 all
For address family: IPv4 Unicast
BGP table version is 8, local router ID is 10.0.0.0, vrf id 0
Default local pref 100, local AS 65000
Status codes:  s suppressed, d damped, h history, * valid, > best, = multipath,
               i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes:  i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
   Network          Next Hop            Metric LocPrf Weight Path
*> 10.0.0.0/32      0.0.0.0                  0         32768 ?
*> 10.0.0.1/32      net0                     0             0 65010 ?
*> 10.0.0.2/32      net1                     0             0 65011 ?
*> 10.0.1.0/24      net0                     0             0 65010 ?
*> 10.0.2.0/24      net0                     0             0 65010 ?
*> 10.0.3.0/24      net1                     0             0 65011 ?
*> 10.0.4.0/24      net1                     0             0 65011 ?
*> 172.20.20.0/24   0.0.0.0                  0         32768 ?
Displayed  8 routes and 8 total paths

与kubernetes建立BGP

上述配置中,tor0tor1已经将kubernetes的节点作为IBGP,下面进行kubernetes侧BPG配置。cilium的CiliumBGPPeeringPolicy CRD中可以配置BGP peer信息。

apiVersion: "cilium.io/v2alpha1"
kind: CiliumBGPPeeringPolicy
metadata:
name: rack0
spec:
nodeSelector:
matchLabels:
rack: rack0
virtualRouters:
- localASN: 65010
exportPodCIDR: true # 自动宣告 Pod CIDR
neighbors:
- peerAddress: "10.0.0.1/32" # tor0 的 IP 地址
peerASN: 65010
---
apiVersion: "cilium.io/v2alpha1"
kind: CiliumBGPPeeringPolicy
metadata:
name: rack1
spec:
nodeSelector:
matchLabels:
rack: rack1
virtualRouters:
- localASN: 65011
exportPodCIDR: true
neighbors:
- peerAddress: "10.0.0.2/32" # tor1 的 IP 地址
peerASN: 65011

上述配置中将标签为rack=rack0的节点(即control-planeworker)与tor0建立邻居,将标签为rack=rack1的节点(即workerworker2)与tor1建立邻居:

# k get node -l rack=rack0
NAME                                 STATUS   ROLES           AGE     VERSION
clab-bgp-cplane-demo-control-plane   Ready    control-plane   2d11h   v1.24.0
clab-bgp-cplane-demo-worker          Ready    <none>          2d11h   v1.24.0
# k get node -l rack=rack1
NAME                           STATUS   ROLES    AGE     VERSION
clab-bgp-cplane-demo-worker2   Ready    <none>   2d11h   v1.24.0
clab-bgp-cplane-demo-worker3   Ready    <none>   2d11h   v1.24.0

CiliumBGPPeeringPolicy各个字段的说明如下

nodeSelector: Nodes which are selected by this label selector will apply the given policy
virtualRouters: One or more peering configurations outlined below. Each peering configuration can be thought of as a BGP router instance.
virtualRouters[*].localASN: The local ASN for this peering configuration
virtualRouters[*].exportPodCIDR: Whether to export the private pod CIDR block to the listed neighbors
virtualRouters[*].neighbors: A list of neighbors to peer with
neighbors[*].peerAddress: The address of the peer neighbor
neighbors[*].peerASN: The ASN of the peer

完成上述配置之后,containerlab的router0tor0tor1就学习到了kubernetes的路由信息:

查看tor0的bgp邻居,可以看到它与clab-bgp-cplane-demo-control-plane(10.0.1.2)clab-bgp-cplane-demo-worker(10.0.2.2)成功建立了邻居关系:

tor0# show bgp summary
IPv4 Unicast Summary (VRF default):
BGP router identifier 10.0.0.1, local AS number 65010 vrf-id 0
BGP table version 13
RIB entries 23, using 4232 bytes of memory
Peers 3, using 2149 KiB of memory
Peer groups 2, using 128 bytes of memory
Neighbor                                     V         AS   MsgRcvd   MsgSent   TblVer  InQ OutQ  Up/Down State/PfxRcd   PfxSnt Desc
router0(net0)                                4      65000      1430      1431        0    0    0 01:10:58            8       13 N/A
clab-bgp-cplane-demo-control-plane(10.0.1.2) 4      65010        46        52        0    0    0 00:02:12            1       11 N/A
clab-bgp-cplane-demo-worker(10.0.2.2)        4      65010        47        53        0    0    0 00:02:15            1       11 N/A
Total number of neighbors 3

查看tor1的bgp邻居,可以看到它与clab-bgp-cplane-demo-worker2(10.0.3.2)clab-bgp-cplane-demo-worker3(10.0.4.2)成功建立了邻居关系:

tor1# show bgp summary
IPv4 Unicast Summary (VRF default):
BGP router identifier 10.0.0.2, local AS number 65011 vrf-id 0
BGP table version 13
RIB entries 23, using 4232 bytes of memory
Peers 3, using 2149 KiB of memory
Peer groups 2, using 128 bytes of memory
Neighbor                               V         AS   MsgRcvd   MsgSent   TblVer  InQ OutQ  Up/Down State/PfxRcd   PfxSnt Desc
router0(net0)                          4      65000      1436      1437        0    0    0 01:11:15            8       13 N/A
clab-bgp-cplane-demo-worker2(10.0.3.2) 4      65011        53        60        0    0    0 00:02:31            1       11 N/A
clab-bgp-cplane-demo-worker3(10.0.4.2) 4      65011        54        61        0    0    0 00:02:33            1       11 N/A
Total number of neighbors 3

查看route0的配置可以发现其获取到了Pod的路由信息:

router0# show bgp ipv4 all
For address family: IPv4 Unicast
BGP table version is 12, local router ID is 10.0.0.0, vrf id 0
Default local pref 100, local AS 65000
Status codes:  s suppressed, d damped, h history, * valid, > best, = multipath,
               i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes:  i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
   Network          Next Hop            Metric LocPrf Weight Path
*> 10.0.0.0/32      0.0.0.0                  0         32768 ?
*> 10.0.0.1/32      net0                     0             0 65010 ?
*> 10.0.0.2/32      net1                     0             0 65011 ?
*> 10.0.1.0/24      net0                     0             0 65010 ?
*> 10.0.2.0/24      net0                     0             0 65010 ?
*> 10.0.3.0/24      net1                     0             0 65011 ?
*> 10.0.4.0/24      net1                     0             0 65011 ?
*> 10.1.0.0/24      net0                                   0 65010 i
*> 10.1.1.0/24      net1                                   0 65011 i
*> 10.1.2.0/24      net0                                   0 65010 i
*> 10.1.3.0/24      net1                                   0 65011 i
*> 172.20.20.0/24   0.0.0.0                  0         32768 ?
Displayed  12 routes and 12 total paths

kubernetes的Pod网络

本环境下,kubernetes的Pod通过分别连接到pod命名空间和host命名空间的一对veth实现互通,当报文从pod命名空间传递到host命名空间之后就会通过host路由进行报文分发。

pod内部的默认路由的网关地址是host的cilium_host接口地址,但响应给pod的arp是接口lxc-xxx(即另一个veth接口)的MAC地址,实现流程如下:

思考

如果将router0tor0tor1和kubernetes的所有节点作为一个IBGP会怎么样(即所有的ASN都相同,都是internal类型的)?

答:此时由于tor0tor1无法将学习到的路由转发给router0,将导致router0缺少pod路由,进而导致网络tor0tor1不通

EBGP和IBGP在技术实现上的第三个区别在路由转发的行为上。通过IBGP学习到的路由,不能传递给其他的IBGP。这么作是为了防止路由环路(loop)。EBGP通过BGP协议里面的AS_PATH和其他元素过滤来自于自己的路由,但是IBGP运行在一个AS内部,没有AS_PATH,所以IBGP干脆不转发来自于其他IBGP的路由。

由于不能转发路由,这要求所有的IBGP router两两相连,组成一个full-mesh的网络。Full-mesh的连接数与节点的关系是n*(n-1),连接数随着节点数的增加而迅速增加,这给配置和管理带来了问题。

参考

TIPs:

  • BGP简单调试:首先使用show bgp summary查看本节点与邻居是否协商成功,然后使用show bgp ipv4 wide查看本节点学习到的路由即可
  • 此外还可以通过show bgp neighbor查看邻居状态,以及通过show bgp peer-group查看peer group的信息,使用show bgp nexthop查看下一跳表
目录
相关文章
|
Linux C语言 开发者
深入解析Linux环境下的scanf()、sscanf()和fscanf()函数
在C语言中,`scanf()`、`sscanf()`和`fscanf()`是用于输入的三个常用函数。它们允许开发者从标准输入、字符串和文件中按照指定的格式读取数据。在Linux环境下,这些函数被广泛用于处理各种输入。本文将详细介绍这三个函数的用法,包括格式化字符串的语法和一些常见的使用场景。
822 1
|
项目管理
深入解析PMP项目内部运营环境
在项目管理领域,PMP认证是一项备受尊敬的资格,它强调了对项目内部运营环境的深刻理解。PMP专业人士不仅需要了解项目管理的基本原则,还需要熟悉项目内部运营环境的方方面面。本文将深入探讨PMP项目内部运营环境的重要性以及如何有效管理这一环境。
|
22天前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
50 3
|
2月前
|
Java C语言 iOS开发
MacOS环境-手写操作系统-16-内存管理 解析内存状态
MacOS环境-手写操作系统-16-内存管理 解析内存状态
49 0
|
5月前
|
数据采集 存储 API
Python虚拟环境数据共享技术解析:最佳实践与常见误区
本文探讨了Python爬虫开发中如何在虚拟环境中管理数据,提倡使用共享目录、数据库和API进行数据共享。通过创建虚拟环境、安装依赖并提供一个使用代理IP爬取微博数据的示例,阐述了如何配置代理、解析网页及保存数据到共享路径。强调了避免硬编码路径、忽视依赖管理和数据安全性的误区。
118 11
Python虚拟环境数据共享技术解析:最佳实践与常见误区
|
4月前
|
安全 网络安全 数据安全/隐私保护
Wi-Fi 环境下的 Piggybacking 现象解析
【8月更文挑战第24天】
71 0
|
5月前
|
开发工具 Android开发 Swift
安卓与iOS开发环境的差异性解析
【7月更文挑战第11天】在移动应用开发的广阔天地中,安卓与iOS两大阵营各据一方,它们的开发环境差异如同东西方文化的差异一样鲜明。本文将深入探讨这两个平台在开发工具、编程语言、用户界面设计以及系统架构等方面的不同,旨在为开发者提供一个清晰的对比视角,帮助他们根据项目需求和个人偏好选择最合适的开发路径。
|
7月前
|
域名解析 Kubernetes 网络协议
【域名解析DNS专栏】云原生环境下的DNS服务:Kubernetes中的DNS解析
【5月更文挑战第29天】本文探讨了Kubernetes中的DNS解析机制,解释了DNS如何将服务名转换为网络地址,促进集群内服务通信。Kubernetes使用kube-dns或CoreDNS作为内置DNS服务器,每个Service自动分配Cluster IP和DNS条目。通过示例展示了创建Service和使用DNS访问的流程,并提出了优化DNS解析的策略,包括使用高性能DNS解析器、启用DNS缓存及监控日志,以实现更高效、可靠的DNS服务。
120 1
|
7月前
|
算法 NoSQL Linux
Linux C++环境下避免死锁的全面策略解析与实践指南
Linux C++环境下避免死锁的全面策略解析与实践指南
178 0
|
存储 Linux C语言
深入解析Linux环境下的sprintf()和printf()函数
在C语言中,`sprintf()`和`printf()`函数是用于格式化输出的两个重要函数。`sprintf()`函数将格式化的数据写入一个字符串,而`printf()`函数则将格式化的数据输出到标准输出。在Linux环境中,这两个函数被广泛应用于各种编程任务。本文将详细介绍这两个函数的用法,包括格式化字符串的语法和一些常见的使用场景。
570 1

推荐镜像

更多